Skip to main content
Log in

Electronic and Thermoelectric Properties of Graphene on 4H-SiC (0001) Nanofacets Functionalized with F4-TCNQ

  • International Electron Devices and Materials Symposium 2019
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The functionalization of graphene is a well-established route for modulating its optoelectronic properties for a wide range of applications. Here, we studied, using photoemission spectroscopies and synchrotron radiation, the band structure upon evaporation of a p-type dopant tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) molecules and determined the work function (WF) shift over a large area of epitaxial graphene grown on a 4H-SiC (0001) silicon carbide substrate. This system exhibits peculiar nanostructures composed of mono and multilayers, notably at the step edges where the electronic properties differ from the terraces. We observed, owing to the high spatial resolution of photoemission electron microscopy (PEEM), that after the adsorption of F4-TCNQ, multilayer graphene on step edges was subjected to less charge transfer compared to the monolayer graphene on terraces, making their final WF smaller. We calculated the thermoelectric properties of this functionalized graphene system by using density functional theory and Boltzmann transport formalism within the range of the Fermi level (EF), and the carrier concentration, which was experimentally determined. We show that the Seebeck coefficient (S) on the nanofacets is 25% larger than on the monolayer terraces, and the maximum power factor (PF) is on the order of 10−2 W/K2m. This order of magnitude is comparable to the PF of commercial thermoelectric materials such as bulk bismuth telluride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Boutchich, H. Arezki, D. Alamarguy, K.-I. Ho, H. Sediri, F. Gunes, J. Alvarez, J. Kleider, C. Lai, and A. Ouerghi, Appl. Phys. Lett. 105, 233111 (2014).

    Google Scholar 

  2. E. Pallecchi, F. Lafont, V. Cavaliere, F. Schopfer, D. Mailly, W. Poirier, and A. Ouerghi, Sci. Rep. 4, 4558 (2014).

    CAS  Google Scholar 

  3. F. Günes, H. Arezki, D. Pierucci, D. Alamarguy, J. Alvarez, J.-P. Kleider, Y.J. Dappe, A. Ouerghi, and M. Boutchich, Nanotechnology 26, 445702 (2015).

    Google Scholar 

  4. Z. Han, A. Kimouche, D. Kalita, A. Allain, H. Arjmandi-Tash, A. Reserbat-Plantey, L. Marty, S. Pairis, V. Reita, N. Bendiab, J. Coraux, and V. Bouchiat, Adv. Funct. Mater. 24, 964 (2014).

    CAS  Google Scholar 

  5. K.-I. Ho, M. Boutchich, C.-Y. Su, R. Moreddu, E.S.R. Marianathan, L. Montes, and C.-S. Lai, Adv. Mater. 27, 6519 (2015).

    CAS  Google Scholar 

  6. L. Khalil, D. Pierucci, E. Papalazarou, J. Chaste, M.G. Silly, F. Sirotti, M. Eddrief, L. Perfetti, E. Lhuillier, and A. Ouerghi, Phys. Rev. Mater. 3, 084002 (2019).

    CAS  Google Scholar 

  7. T.A. Amollo, G.T. Mola, M.S.K. Kirui, and V.O. Nyamori, Crit. Rev. Solid State Mater. Sci. 43, 133 (2018).

    CAS  Google Scholar 

  8. V.-T. Tran, J. Saint-Martin, P. Dollfus, and S. Volz, Sci. Rep. 7, 2313 (2017).

    Google Scholar 

  9. L.I. Johansson, R. Armiento, J. Avila, C. Xia, S. Lorcy, I.A. Abrikosov, M.C. Asensio, and C. Virojanadara, Sci. Rep. 4, 4157 (2015).

    Google Scholar 

  10. W. Bao, L. Jing, J. Velasco, Y. Lee, G. Liu, D. Tran, B. Standley, M. Aykol, S.B. Cronin, D. Smirnov, M. Koshino, E. McCann, M. Bockrath, and C.N. Lau, Nat. Phys. 7, 948 (2011).

    CAS  Google Scholar 

  11. K.-P. Chang, K.-I. Ho, M. Boutchich, J. Chaste, H. Arezki, and C.-S. Lai, Semicond. Sci. Technol. 35, 015005 (2019).

    Google Scholar 

  12. T. Fang, A. Konar, H. Xing, and D. Jena, Phys. Rev. B 78, 205403 (2008).

    Google Scholar 

  13. E.H. Hasdeo, L.P.A. Krisna, M.Y. Hanna, B.E. Gunara, N.T. Hung, and A.R.T. Nugraha, J. Appl. Phys. 126, 035109 (2019).

    Google Scholar 

  14. Y.M. Zuev, W. Chang, and P. Kim, Phys. Rev. Lett. 102, 096807 (2009).

    Google Scholar 

  15. C. Coletti, C. Riedl, D.S. Lee, B. Krauss, L. Patthey, K. Von Klitzing, J.H. Smet, and U. Starke, Phys. Rev. B 81, 235401 (2010).

    Google Scholar 

  16. H. Pinto, R. Jones, J.P. Goss, and P.R. Briddon, J. Phys. Condens. Matter 21, 402001 (2009).

    CAS  Google Scholar 

  17. C. Chen, J. Avila, H. Arezki, F. Yao, V.L. Nguyen, Y.H. Lee, M. Boutchich, and M.C. Asensio, J. Phys. Conf. Ser. 864, 012029 (2017).

    Google Scholar 

  18. H. Henck, Z. Ben Aziza, D. Pierucci, F. Laourine, F. Reale, P. Palczynski, J. Chaste, M.G. Silly, F. Bertran, P. Le Fèvre, E. Lhuillier, T. Wakamura, C. Mattevi, J.E. Rault, M. Calandra, and A. Ouerghi, Phys. Rev. B 97, 155421 (2018).

    CAS  Google Scholar 

  19. P. Ayria, S. Tanaka, A.R.T. Nugraha, M.S. Dresselhaus, and R. Saito, Phys. Rev. B 94, 075429 (2016).

    Google Scholar 

  20. H. Nakajima, A. Tong-on, N. Sumano, K. Sittisard, S. Rattanasuporn, C. Euaruksakul, R. Supruangnet, N. Jearanaikoon, P. Photongkam, N. Chanlek, and P. Songsiriritthigul, J. Phys. Conf. Ser. 425, 132020 (2013).

    Google Scholar 

  21. C. Euaruksakul, N. Jearanaikoon, W. Bussayaporn, N. Kamonsutthipaijit, P. Photongkam, S. Tunmee, and P. Songsiriritthigul, J. Phys. Conf. Ser. 425, 182011 (2013).

    Google Scholar 

  22. H. Hibino, H. Kageshima, F. Maeda, M. Nagase, Y. Kobayashi, and H. Yamaguchi, Phys. Rev. B 77, 075413 (2008).

    Google Scholar 

  23. D. Pierucci, H. Sediri, M. Hajlaoui, E. Velez-Fort, Y.J. Dappe, M.G. Silly, R. Belkhou, A. Shukla, F. Sirotti, N. Gogneau, and A. Ouerghi, Nano Res. 8, 1026 (2015).

    CAS  Google Scholar 

  24. M.L. Bolen, S.E. Harrison, L.B. Biedermann, and M.A. Capano, Phys. Rev. B 80, 115433 (2009).

    Google Scholar 

  25. J. Osaklung, C. Euaruksakul, W. Meevasana, and P. Songsiriritthigul, Appl. Surf. Sci. 258, 4672 (2012).

    CAS  Google Scholar 

  26. S.Y. Zhou, G.-H. Gweon, A.V. Fedorov, P.N. First, W.A. de Heer, D.-H. Lee, F. Guinea, A.H. Castro bNeto, and A. Lanzara, Nat. Mater. 6, 770 (2007).

    CAS  Google Scholar 

  27. N. Koch, S. Duhm, J.P. Rabe, A. Vollmer, and R.L. Johnson, Phys. Rev. Lett. 95, 237601 (2005).

    Google Scholar 

  28. W. Chen, S. Chen, D.C. Qi, X.Y. Gao, and A.T.S. Wee, J. Am. Chem. Soc. 129, 10418 (2007).

    CAS  Google Scholar 

  29. J. Fraxedas, Y.J. Lee, I. Jiménez, R. Gago, R.M. Nieminen, P. Ordejόn, and E. Canadell, Phys. Rev. B 68, 195115 (2003).

    Google Scholar 

  30. J.M. Lindquist and J.C. Hemminger, J. Phys. Chem. 92, 1394 (1988).

    CAS  Google Scholar 

  31. P. Persson, S. Lunell, A. Szöke, B. Ziaja, and J. Hajdu, Protein Sci. 10, 2480 (2009).

    Google Scholar 

  32. X. Tian, J. Xu, and X. Wang, J. Phys. Chem. B 114, 11377 (2010).

    CAS  Google Scholar 

  33. H. Hibino, H. Kageshima, M. Kotsugi, F. Maeda, F.-Z. Guo, and Y. Watanabe, Phys. Rev. B 79, 125437 (2009).

    Google Scholar 

  34. C. Mathieu, N. Barrett, J. Rault, Y.Y. Mi, B. Zhang, W.A. De Heer, C. Berger, E.H. Conrad, and O. Renault, Phys. Rev. B 83, 235436 (2011).

    Google Scholar 

  35. J. Hicks, A. Tejeda, A. Taleb-Ibrahimi, M.S. Nevius, F. Wang, K. Shepperd, J. Palmer, F. Bertran, P. Le Fèvre, J. Kunc, W.A. De Heer, C. Berger, and E.H. Conrad, Nat. Phys. 9, 49 (2013).

    CAS  Google Scholar 

  36. N. Barrett, O. Renault, H. Lemaître, P. Bonnaillie, F. Barcelo, F. Miserque, M. Wang, and C. Corbel, J. Electron Spectrosc. Relat. Phenom. 195, 117 (2014).

    CAS  Google Scholar 

  37. J. Jobst, L.M. Boers, C. Yin, J. Aarts, R.M. Tromp, and S.J. van der Molen, Ultramicroscopy 200, 43 (2019).

    CAS  Google Scholar 

  38. S. Yoshimoto, K. Kameshima, T. Koitaya, Y. Harada, K. Mukai, and J. Yoshinobu, Org. Electron. 15, 356 (2014).

    CAS  Google Scholar 

  39. H.-Z. Tsai, A.A. Omrani, S. Coh, H. Oh, S. Wickenburg, Y.-W. Son, D. Wong, A. Riss, H.S. Jung, G.D. Nguyen, G.F. Rodgers, A.S. Aikawa, T. Taniguchi, K. Watanabe, A. Zettl, S.G. Louie, J. Lu, M.L. Cohen, and M.F. Crommie, ACS Nano 9, 12168 (2015).

    CAS  Google Scholar 

  40. W. Chen, D. Qi, X. Gao, and A.T.S. Wee, Prog. Surf. Sci. 84, 279 (2009).

    CAS  Google Scholar 

  41. J.Y. Kim and J.C. Grossman, Nano Lett. 15, 2830 (2015).

    CAS  Google Scholar 

  42. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009).

    Google Scholar 

  43. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R.A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, J. Phys. Condens. Matter 29, 465901 (2017).

  44. H.J. Goldsmid, Introduction to Thermoelectricity (Berlin: Springer, 2009).

    Google Scholar 

  45. B. Liao, J. Zhou, B. Qiu, M.S. Dresselhaus, and G. Chen, Phys. Rev. B 91, 235419 (2015).

    Google Scholar 

  46. W. Li, Phys. Rev. B 92, 075405 (2015).

    Google Scholar 

  47. P.A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M.G. Spencer, Nano Lett. 8, 4248 (2008).

    CAS  Google Scholar 

  48. K. Fukumoto, M. Boutchich, H. Arezki, K. Sakurai, D. Di Felice, Y.J. Dappe, K. Onda, and S. Koshihara, Carbon 124, 49 (2017).

    CAS  Google Scholar 

  49. Y. Anno, Y. Imakita, K. Takei, S. Akita, and T. Arie, 2D Mater. 4, 025019 (2017).

    Google Scholar 

  50. O. Yamashita, S. Tomiyoshi, and K. Makita, J. Appl. Phys. 93, 368 (2003).

    CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr Abdelkarim Ouerghi for providing high quality epitaxial graphene samples. M.B. would like to thank the Centre National de la Recherche Scientifique (CNRS) for their financial support through the JRP program grant number 1630 as well as Professor Songphol Kanjanachuchai (Chulalongkorn University) for fruitful discussions. M.Y.Y. and A.R.T.N. acknowledge Mahameru Grid LIPI for their high-performance computing facilities. C.E. would like to thank Pat Photongkam and Thipusa Wongpinij for assisting in LEEM/PEEM operations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Boutchich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1018 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Euaruksakul, C., Nakajima, H., Rattanachata, A. et al. Electronic and Thermoelectric Properties of Graphene on 4H-SiC (0001) Nanofacets Functionalized with F4-TCNQ. J. Electron. Mater. 49, 6872–6880 (2020). https://doi.org/10.1007/s11664-020-08201-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08201-y

Keywords

Navigation