Skip to main content
Log in

Thermoelectric Properties of Graphene-Boron-Nitride Nanoribbons with Transition Metal Impurities

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

The thermoelectric properties of graphene-hBN nanoribbons with substitutional transition metal impurities (Cr, Mn, Fe, Co, Ni) are investigated in the framework of constrained spin density functional theory calculations. The focus on atomic-sized thermoelectric devices is not only supported by the benefits of scaling but also by the enhanced thermopower, which arises from typically sharp variations of the device conductance. Some of the investigated structures present a change in the sign of the Seebeck coefficient by raising the temperature, as a direct consequence of resonant electron transmission. Different transition metal substitutions on boron and nitrogen atoms are investigated comparatively and an overall enhancement of the thermopower and figure of merit is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Dietl, D.D. Awschalom, M. Kaminska, and H. Ohno, Spintronics, Semiconductors and Semimetals, vol. 82 (Elsevier, Amsterdam, 2008).

    Google Scholar 

  2. V.V. Maslyuk, S. Achilles, L. Sandratskii, M. Brandbyge, and I. Mertig, Phys. Rev. B 88, 081403 (2013).

    Article  Google Scholar 

  3. K. Koumoto and T. Mori, Thermoelectric Nanomaterials. Springer Series in Materials Science, vol. 182 (Springer, Heidelberg, 2013).

  4. D.M. Rowe, Thermoelectrics Handbook, Micro-to-Nano (CRC Press, New York, 2006).

    Google Scholar 

  5. Li Song, Lijie Ci, H. Lu, et al., Nano Lett. 10, 3209 (2010).

    Article  Google Scholar 

  6. Lijie Ci, Li Song, C. Jin, et al., Nat. Mater. 9, 430 (2010).

    Article  Google Scholar 

  7. M. Dongwei, L. Zhansheng, J. Weiwei, and T. Yanan, J.␣Phys. 24, 145501 (2012).

    Google Scholar 

  8. T.L. Mitran, A. Nicolaev, G.A. Nemnes, L. Ion, and S. Antohe, J. Phys. 24, 326003 (2012).

    Google Scholar 

  9. F. Oba, A. Togo, I. Tanaka, K. Watanabe, and T. Taniguchi, Phys. Rev. B 81, 075125 (2010).

    Article  Google Scholar 

  10. K. Kobayashi and S. Komatsu, J. Phys. Soc. Jpn. 78, 044706 (2009).

    Article  Google Scholar 

  11. Z. Liu, L. Ma, G. Shi, W. Zhou, et al., Nat. Nanotechnol. 8, 119 (2013).

    Article  Google Scholar 

  12. L. Britnell, R.V. Gorbachev, A.K. Geim, L.A. Ponomarenko, A. Mishchenko, M.T. Greenaway, T.M. Fromhold, K.S. Novoselov, and L. Eaves, Nat. Commun. 4, 1794 (2013).

    Article  Google Scholar 

  13. H. Wang, et al., IEEE Electron Device Lett. 32, 1209 (2011).

    Article  Google Scholar 

  14. V. Hung Nguyen, F. Mazzamuto, A. Bournel, and P. Dollfus, J. Phys. D Appl. Phys. 45, 325104 (2012).

    Article  Google Scholar 

  15. Y. Xu, et al., Appl. Phys. Lett. 99, 133109 (2011).

    Article  Google Scholar 

  16. M.P. Levendorf, et al., Nature 488, 627 (2012).

    Article  Google Scholar 

  17. G.A. Nemnes, J. Nanomater. 2012, 748639 (2012).

    Article  Google Scholar 

  18. G.A. Nemnes and S. Antohe, Mater. Sci. Eng. B 178, 1347 (2013).

    Article  Google Scholar 

  19. T. Markussen, A.-P. Jauho, and M. Brandbyge, Phys. Rev. B 79, 035415 (2009).

    Article  Google Scholar 

  20. G.A. Nemnes, C. Visan, and S. Antohe, Physica E 44, 1092 (2012).

    Article  Google Scholar 

  21. Y.-F. Li, B.-R. Li, and H.-L. Zhang, J. Phys. 20, 415207 (2008).

    Google Scholar 

  22. X.Q. Shi, Z.X. Dai, X.H. Zheng, and Z. Zeng, J. Chem. Phys. B 110, 16902 (2006).

    Article  Google Scholar 

  23. Z.X. Dai, X.H. Zheng, X.Q. Shi, and Z. Zeng, Phys. Rev. B 72, 205408 (2005).

    Article  Google Scholar 

  24. M. Cutler and N.F. Mott, Phys. Rev. 181, 1336 (1969).

    Article  Google Scholar 

  25. U. Sivan and Y. Imry, Phys. Rev. B 33, 551 (1986).

    Article  Google Scholar 

  26. P. Streda, J. Phys. 1, 1025 (1989).

    Google Scholar 

  27. H. Sevincli and G. Cuniberti, Phys. Rev. B 81, 113401 (2010).

    Article  Google Scholar 

  28. K. Yang, Y. Chen, R. D’Agosta, Y. Xie, J. Zhong, and A. Rubio, Phys. Rev. B 86, 045425 (2012).

    Article  Google Scholar 

  29. C. Visan, Rom. Rep. Phys.. 66, 1023 (2014).

    Google Scholar 

  30. V. Barone, O. Hod, and G.E. Scuseria, Nano Lett. 6, 2748 (2006).

    Article  Google Scholar 

  31. Y.-W. Son, L.C. Marvin, and G.L. Steven, Nature 444, 347 (2006).

    Article  Google Scholar 

  32. J.M. Soler, E. Artacho, J.D. Gale, A. Garca, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys. Cond. Mater. 14, 2745 (2002).

    Article  Google Scholar 

  33. P. Ordejon, E. Artacho, and J.M. Soler, Phys. Rev. B 53, R10441 (1995).

    Article  Google Scholar 

  34. M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

Discussions with G.A. Nemnes are gratefully appreciated. This work was supported by the Romanian National Authority for Scientific Research, under Grant PN 09370104/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camelia Visan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Visan, C. Thermoelectric Properties of Graphene-Boron-Nitride Nanoribbons with Transition Metal Impurities. J. Electron. Mater. 43, 3470–3476 (2014). https://doi.org/10.1007/s11664-014-3289-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3289-9

Keywords

Navigation