Skip to main content
Log in

Effect of Multiple Reflowing Processes on Interfacial Reactions and Mechanical Properties between Sn-9.0 wt.%Zn, Sn-3.0 wt.%Ag-0.5 wt.%Cu Solders and Ag Substrate

  • TMS2019 Phase Stability in Electronic Materials
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effect of multiple reflowing processes on interfacial reactions and mechanical properties of the Sn-9.0 wt.%Zn (SZ)/Ag and Sn-3.0 wt.%Ag-0.5 wt.%Cu (SAC)/Ag couples was investigated in this study. The SZ/Ag and SAC/Ag couples were reflowed at 240°C for 10 min in one up to five times. After reflowing, all couples were quenched in icy water and air-cooling conditions. The experimental results revealed that the AgZn3, Ag5Zn8, and AgZn phases were formed in the SZ/Ag couple. The thin AgZn3 layer was observed when the SZ/Ag couple was quenched in icy water. When the number of reflows was increased, a rod-shaped Zn phase gradually became a fine needle-shaped Zn phase. Only the Ag3Sn phase was formed in the SAC/Ag couple. The growth mechanism of the intermetallic compound was diffusion-controlled in both reaction couples. A brittle fracture was observed in the SZ/Ag solder joint. The fracture surface showed the ductile and slightly brittle failure in the SAC/Ag solder joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Lau, C.P. Wong, J.L. Prince, and W. Nakayama, Electronic Packaging: Design, Material, Process, and Reliability (New York: McGraw-Hill, 1998).

    Google Scholar 

  2. M.L. Minges, Electronic Materials Handbook: Packaging (Materials Park, OH: ASM International. Handbook Committee, 1989).

    Google Scholar 

  3. C.M.L. Wu, D.Q. Yu, C.M.T. Law, and L. Wang, Mater. Sci. Eng. R 44, 1 (2004).

    Article  Google Scholar 

  4. S.K. Kang, D.Y. Shih, D. Leonard, D.W. Henderson, T. Goesselin, S.I. Cho, J. Yu, and W.K. Choi, JOM 56, 34 (2004).

    Article  CAS  Google Scholar 

  5. H. Hao, Y. Shi, Z. Xia, Y. Lei, and F. Guo, J. Electron. Mater. 37, 2 (2008).

    Article  CAS  Google Scholar 

  6. K.W. Moon, W.J. Boettinger, and U.R. Kattner, J. Electron. Mater. 29, 1122 (2000).

    Article  CAS  Google Scholar 

  7. J. Mittal, S.M. Kuo, Y.W. Lin, and K.L. Lin, J. Electron. Mater. 38, 2436 (2009).

    Article  CAS  Google Scholar 

  8. Z. Moser, J. Dutkiewicz, W. Gasior, and J. Salawa, ASM Handbook Vol. 3: Alloy Phase Diagrams, ed. H. Baker (Materials Park, OH: ASM, 1985),

    Google Scholar 

  9. G.J. Zhao, G.M. Sheng, L.I. Wu, and X.J. Yuan, Trans. Nonferrous Met. Soc. China 22, 1954 (2012).

    Article  CAS  Google Scholar 

  10. Y.M. Liu, Y.L. Chen, and T.H. Chuang, J. Electron. Mater. 29, 1047 (2000).

    Article  CAS  Google Scholar 

  11. R.R. Tummala and E.J. Rymaszewski, Microelectronic Packaging Handbook (New York: Van Nostrand Reinhold, 1989).

    Book  Google Scholar 

  12. D.H. Lin, Electronic Packaging Technology Introduction (Taipei: Taiwan Printed Circuit Association, 2010).

    Google Scholar 

  13. A.A. El-Daly and A.E. Hammad, Mater. Sci. Eng. A 527, 5212 (2010).

    Article  Google Scholar 

  14. J.M. Song, P.C. Liu, C.L. Shih, and K.L. Lin, J. Electron. Mater. 34, 1249 (2005).

    Article  CAS  Google Scholar 

  15. K.L. Lin, P.C. Liu, and J.M. Song, in Electronic Components and Technology Conference, pp. 1310–1313 (2004).

  16. P.Y. Yeh, J.M. Song, and K.L. Lin, J. Electron. Mater. 35, 978 (2006).

    Article  CAS  Google Scholar 

  17. M.Y. Du, C.M. Chen, and S.W. Chen, Mater. Chem. Phys. 82, 818 (2003).

    Article  CAS  Google Scholar 

  18. Y.W. Yen, W.T. Chou, Y. Tseng, C. Lee, and C.L. Hsu, J. Electron. Mater. 37, 73 (2008).

    Article  CAS  Google Scholar 

  19. S.K. Das, A. Sharif, Y.C. Chan, N.B. Wong, and W.K.C. Yung, Microelectron. Eng. 86, 2086 (2009).

    Article  CAS  Google Scholar 

  20. D.Q. Yu, H.P. Xie, and L. Wang, J. Alloys Compd. 385, 119 (2004).

    Article  CAS  Google Scholar 

  21. C.Y. Chou, S.W. Chen, and Y.S. Chang, J. Mater. Res. 21, 1849 (2006).

    Article  CAS  Google Scholar 

  22. T. Gómez-Acebo, Calphad 22, 203 (1998).

    Article  Google Scholar 

  23. Y.W. Yen, C.C. Jao, and C. Lee, J. Mater. Res. 21, 2986 (2006).

    Article  CAS  Google Scholar 

  24. C.C. Jao, Y.W. Yen, C.Y. Lin, and C.P. Lee, Intermetallics 16, 463 (2008).

    Article  CAS  Google Scholar 

  25. B.F. Dyson, T.R. Anthony, and D. Turnbull, J. Appl. Phys. 38, 3408 (1967).

    Article  CAS  Google Scholar 

  26. A.K. Gain, Y.C. Chan, A. Sharif, N.B. Wong, and W.K.C. Yung, Microelectron. Reliab. 49, 746 (2009).

    Article  CAS  Google Scholar 

  27. P.Y. Yeh, J.M. Song, and K.L. Lin, J. Electron. Mater. 35, 978 (2006).

    Article  CAS  Google Scholar 

  28. H. Okamoto, J. Phase Equilib. Diffus. 35, 105 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Ministry of Science and Technology, Taiwan, ROC. (Grant No. MOST 104-2628-E-011-001-MY3); the Applied Research Center for Thin-Film Metallic Glass; and The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan. The author is also thankful for the help of Mr. S. C. Laiw who works at the National Taiwan University of Science and Technology for SEM–EDS operation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yee-Wen Yen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, CY., Kuo, PC., Chen, CM. et al. Effect of Multiple Reflowing Processes on Interfacial Reactions and Mechanical Properties between Sn-9.0 wt.%Zn, Sn-3.0 wt.%Ag-0.5 wt.%Cu Solders and Ag Substrate. J. Electron. Mater. 49, 257–267 (2020). https://doi.org/10.1007/s11664-019-07752-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07752-z

Keywords

Navigation