Skip to main content
Log in

Correlation Between the Growth of Voids and Ni3Sn4 Intermetallic Compounds at SnAg/Ni and SnAgCuBiSbNi/Ni Interfaces at Temperatures up to 200°C

  • TMS2019 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The increased demand for microelectronic devices that function in hotter environments compels the study of Pb-free solders containing solid solution dispersoids (such as Bi and Sb), which are stable at significant concentrations in Sn at temperatures close to 200°C. In this study, the growth of Ni3Sn4 intermetallic compounds was examined at Ni/Sn-3.7Ag-0.65Cu-3.0Bi-1.43Sb-0.15Ni solder interfaces at temperatures up to 200°C, and compared to growth of Ni3Sn4 at Ni/Sn-3.5Ag interfaces, under the same conditions. The growth of Ni3Sn4 layers thicker than 5 μm was correlated with the formation of voids in the solder near the Ni3Sn4 interface, and an order of magnitude increase in the reaction constant. An almost continuous line of voids formed at the Sn/solder interface, some time after the initial formation of voids in these diffusion couples. Continued heat treatment resulted in continued growth of both the voids and the Ni3Sn4 layer, in direct proportion, consistent with a dominant Sn vacancy diffusion mechanism in the growing Ni3Sn4 layer (the ratio of average Ni3Sn4 thickness to average void thickness was one). At Ni/Sn-3.7Ag-0.65Cu-3.0Bi-1.43Sb-0.15Ni solder interfaces this occurred after only 250 h at 175°C; significant effects on the reliability of such solder joints would be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Choudhury, S. Telu, A. Kumar, M. Ribas, and S. Sarkar, in 2018 7th Electronic System Technology Conference 1 (2018).

  2. G. Ghosh, J. Electron. Mater. 29, 1182 (2000).

    Article  CAS  Google Scholar 

  3. M.L. Huang, T. Loeher, D. Manessis, L. Boettcher, A. Ostmann, and H. Reichl, J. Electron. Mater. 35, 181 (2006).

    Article  CAS  Google Scholar 

  4. A. Sharif, M.N. Islam, and Y.C. Chan, Sci. Eng. B Solid-State Mater. Adv. Technol. 113, 184 (2004).

    Article  Google Scholar 

  5. J.W. Yoon, C.B. Lee, and S.B. Jung, J. Electron. Mater. 32, 1195 (2003).

    Article  CAS  Google Scholar 

  6. Y. Liu, F. Sun, H. Zhang, and P. Zou, J. Mater. Sci.: Mater. Electron. 23, 1705 (2012).

    CAS  Google Scholar 

  7. P. Lall, G. Limaye, S. Shantaram, and J. Suhling, in Proceedings InterPACK2013 1 (2016).

  8. A.-Z. Miric, in SMTA International Conference (2010).

  9. Q.B. Tao, L. Benabou, K.L. Tan, J.M. Morelle, and F.B. Ouezdou, in Proceedings of the Electronic Packaging Technology Conference EPTC (2016).

  10. R.J. Coyle, K. Sweatman, and B. Arfaei, JOM 67, 2394 (2015).

    Article  CAS  Google Scholar 

  11. M. Genanu, F. Mutuku, E.J. Cotts, J. Wilcox, B. Arfaei, and E. Perfecto, in Proceedings—Electronic Components Technology Conference, vol. 423 (2017).

  12. B. Arfaei, T. Tashtoush, N. Kim, L. Wentlent, E. Cotts, and P. Borgesen, in Proceedings—Electronic Components Technology Conference, vol. 125 (2011).

  13. F. Mutuku, B. Arfaei, and E.J. Cotts, J. Electron. Mater. 46, 2067 (2017).

    Article  CAS  Google Scholar 

  14. M. Matahir, L.T. Chin, K.S. Tan, and A.O. Olofinjana, Small 46, 50 (2011).

    Google Scholar 

  15. A.A. El-Daly, A.M. El-Taher, and S. Gouda, J. Alloys Compd. 627, 268 (2015).

    Article  CAS  Google Scholar 

  16. C.W. Hwang and K. Suganuma, Mater. Sci. Eng., A 373, 187 (2004).

    Article  Google Scholar 

  17. R.S. Pandher, B.G. Lewis, R. Vangaveti, and B. Singh, in Proceedings—Electronic Components Technology Conference, vol. 669 (2007).

  18. W.C. Luo, C.E. Ho, J.Y. Tsai, Y.L. Lin, and C.R. Kao, Mater. Sci. Eng., A 396, 385 (2005).

    Article  Google Scholar 

  19. Z. Chen, M. He, and G. Qi, J. Electron. Mater. 33, 1465 (2004).

    Article  CAS  Google Scholar 

  20. C.B. Lee, J.W. Yoon, S.J. Suh, S.B. Jung, C.W. Yang, C.C. Shur, and Y.E. Shin, J. Mater. Sci.: Mater. Electron. 14, 487 (2003).

    CAS  Google Scholar 

  21. A. Choubey, H. Yu, M. Osterman, M. Pecht, F. Yun, L. Yonghong, and X. Ming, J. Electron. Mater. 37, 1130 (2008).

    Article  CAS  Google Scholar 

  22. A. Kumar and Z. Chen, J. Electron. Mater. 40, 213 (2011).

    Article  CAS  Google Scholar 

  23. M. He, A. Kumar, P.T. Yeo, G.J. Qi, and Z. Chen, Thin Solid Films 462–463, 387 (2004).

    Article  Google Scholar 

  24. M. He, Z. Chen, and G. Qi, Acta Mater. 52, 2047 (2004).

    Article  CAS  Google Scholar 

  25. A. Kumar, M. He, and Z. Chen, Surf. Coat. Technol. 198, 283 (2005).

    Article  CAS  Google Scholar 

  26. P. Sun, C. Andersson, X. Wei, Z. Cheng, Z. Lai, D. Shangguan, and J. Liu, Proc.—Electron. Compon. Technol. Conf. 2006, 1468 (2006).

    Google Scholar 

  27. M.O. Alam and Y.C. Chan, J. Appl. Phys. 98, 21 (2005).

    Google Scholar 

  28. J.W. Yoon and S.B. Jung, J. Alloys Compd. 376, 105 (2004).

    Article  CAS  Google Scholar 

  29. S. Ishikawa, E. Hashino, T. Kono, and K. Tatsumi, Mater. Trans. 46, 2351 (2005).

    Article  CAS  Google Scholar 

  30. L.L. Duan, D.Q. Yu, S.Q. Han, J. Zhao, and L. Wang, in 2004 Interenational Conference Buses Electronic Product Reliability and Liability, Proceedings, vol. 35 (2004).

  31. W.M. Tang, A.Q. He, Q. Liu, and D.G. Ivey, Int. J. Miner. Metall. Mater. 17, 459 (2010).

    Article  CAS  Google Scholar 

  32. H.H. Hsu, Y.T. Huang, S.Y. Huang, T.C. Chang, and A.T. Wu, J. Electron. Mater. 44, 3888 (2015).

    Article  CAS  Google Scholar 

  33. Y. Chen, Dissertation, UCLA (2016).

  34. H.D. Blair, D. Howard, P. Tsung-Yu, and J.M. Nicholson, in 1998 Proceedings. 48th Electronic Components and Technology Conference (1998), p. 259.

  35. B.M. Chung, J. Choi, and J.Y. Huh, J. Electron. Mater. 41, 44 (2012).

    Article  CAS  Google Scholar 

  36. P.L. Tu, Y.C. Chan, K.C. Hung, and J.K.L. Lai, Scr. Mater. 44, 317 (2001).

    Article  CAS  Google Scholar 

  37. J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear, and P. Thompson, J. Appl. Phys. 85, 8456 (1999).

    Article  CAS  Google Scholar 

  38. P. Choudhury, D. Ph, S. Sarkar, D. Ph, and M. Sobczak, in Proceedings SMTA International (2016).

  39. Y. Li, O. Hatch, P. Liu, and D. Goyal, J. Electron. Mater. 46, 1674 (2017).

    Article  CAS  Google Scholar 

  40. C.P. Lin and C.M. Chen, Microelectron. Reliab. 52, 385 (2012).

    Article  CAS  Google Scholar 

  41. L.C. Shiau, C.E. Ho, and C.R. Kao, Solder. Surf. Mt. Technol. 14, 25 (2002).

  42. X. Hu, T. Xu, X. Jiang, and Y. Li, J. Mater. Sci.: Mater. Electron. 27, 4245 (2016).

    CAS  Google Scholar 

  43. M.O. Alam, Y.C. Chan, and K.C. Hung, Microelectron. Reliab. 42, 1065 (2002).

    Article  Google Scholar 

  44. Y.-D. Jeon, K.-W. Paik, K.-S. Bok, W.-S. Choi, and C.-L. Cho, in 2001 Proceedings 51st Electronic Components Technology Conference (Cat. No.01CH37220), vol. 00, p. 1326 (2001).

  45. Y.C. Sohn, J. Yu, S.K. Kang, D.Y. Shih, and W.K. Choi, J. Electron. Mater. 33, 790 (2004).

    Article  CAS  Google Scholar 

  46. T. Hentschel, D. Isheim, R. Kirchheim, F. Müller, and H. Kreye, Acta Mater. 48, 933 (2000).

    Article  CAS  Google Scholar 

  47. K.F. Dreyer, W.K. Neils, R.R. Chromik, D. Grosman, and E.J. Cotts, Appl. Phys. Lett. 67, 2795 (1995).

    Article  CAS  Google Scholar 

  48. Z. Balogh and G. Schmitz, Diffusion in metals and alloys, in Physical Metallurgy, 5th edn. (Elsevier, Amsterdam, 2014).

    Chapter  Google Scholar 

  49. A.M. Gusak, Y.A. Lyashenko, S.V. Kornienko, M.O. Pasichnyy, A.S. Shirinyan, and T.V. Zaporozhets, Diffusion-Controlled Solid State Reactions: in Alloys, Thin-Films, and Nano Systems (Hoboken: Wiley, 2010).

    Book  Google Scholar 

  50. M. Wendt, A. Plöβl, A. Weimar, M. Zenger, and K. Dilger, J. Mater. Sci. Chem. Eng. 4, 116 (2016).

    CAS  Google Scholar 

  51. D.A. Porter, M.Y.S. Kenneth, and E. Easterling, Phase Transformations in Metals and Alloys, 3rd ed. (Boca Raton: CRC Press Taylor, 2009).

    Google Scholar 

  52. G.P. Vassilev, K.I. Lilova, and J.C. Gachon, J. Alloys Compd. 469, 264 (2009).

    Article  CAS  Google Scholar 

  53. J.Y. Huh, S.U. Han, and C.Y. Park, Met. Mater. Int. 10, 123 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Cotts.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadian, F., Schoeller, H. & Cotts, E. Correlation Between the Growth of Voids and Ni3Sn4 Intermetallic Compounds at SnAg/Ni and SnAgCuBiSbNi/Ni Interfaces at Temperatures up to 200°C. J. Electron. Mater. 49, 226–240 (2020). https://doi.org/10.1007/s11664-019-07727-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07727-0

Keywords

Navigation