Skip to main content

Advertisement

Log in

Effect of Different Concentrations of KMnO4 Precursor on Supercapacitive Properties of MnO Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In the present work, the electrochemical performance of MnO thin films synthesized using the different concentrations of KMnO4 is reported. Structural study confirms the cubic structure of MnO thin films. The contact angle study confirms the hydrophilic nature of the prepared thin films. Surface morphology study reveals highly porous and well-connected uniformly distributed spherical grains. Furthermore, a Brunnauer–Emmett–Teller study reveals the co-existence of mesoporous nature with a pore size of 4 nm having surface area 24.12 m2 g−1. Electrochemical supercapacitive property gives the highest specific capacitance of 561 F g−1 at the scan rate 5 mV s−1 in 1 M Na2SO4 aqueous electrolyte. The power and energy density for the optimized electrode is 357 W kg−1 and 47 Wh kg−1, respectively, at 0.5 mA current density. The electrochemical impedance spectroscopy spectra of the electrode show the less charge transfer resistance (Rct) of 1.64 Ω, as compared to other electrodes. The higher cycling stability of 84% is achieved after 1500 cyclic voltammetry cycles. The flexible solid-state MnO//MnO symmetric supercapacitor device exhibited maximum specific capacitance of 117.78 F g−1 at 5 mV s−1. Also, the device possesses high energy and power densities of 23.26 Wh kg−1 and 210 W kg−1, respectively, at 4 mA current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Zhang, P. Yu, H. Zhang, D. Zhang, X. Sun, and Y. Ma, Electrochim. Acta 89, 523 (2013).

    CAS  Google Scholar 

  2. G. Kéranguéven, J. Faye, S. Royer, and S. Pronkin, Electrochim. Acta 222, 755 (2016).

    Google Scholar 

  3. D. Qu, X. Feng, X. Wei, L. Guo, H. Cai, and H. Tang, Appl. Surf. Sci. 413, 344 (2017).

    CAS  Google Scholar 

  4. A. Shaikh, M. Waikar, and R. Sonkawade, Synth. Met. 247, 1 (2019).

    CAS  Google Scholar 

  5. A. Lokhande, A. Patil, A. Shelke, P. Babar, M. Gang, V. Lokhande, D. Dhawale, C. Lokhande, and J. Kim, Electrochim. Acta 284, 80 (2018).

    CAS  Google Scholar 

  6. N. Chodankar, D. Dubal, A. Lokhande, and C. Lokhande, J. Colloid Interface Sci. 460, 370 (2015).

    CAS  Google Scholar 

  7. S. Dey, G. Dhal, D. Mohan, and R. Prasad, Mater. Today 12, 63 (2018).

    Google Scholar 

  8. S. Dey, G. Dhal, D. Mohan, and R. Prasad, Mater. Today 8, 26 (2017).

    Google Scholar 

  9. A. González, E. Goikolea, J. Andoni, and R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189 (2016).

    Google Scholar 

  10. H. Chi, Y. Wu, C. Yu Shen, Q. Zhang, and H.Qin Xiong, Electrochim. Acta 289, 158 (2018).

    CAS  Google Scholar 

  11. V. Vukojevic, S. Ojurdjic, M. Ognjanovic, M. Fabian, and D. Stankovic, J. Electroanal. Chem. 823, 610 (2018).

    CAS  Google Scholar 

  12. C. Tsai, C. Shih, W. Chi, and Y. Yu, Org. Electron. 52, 51 (2018).

    CAS  Google Scholar 

  13. S. Dey, G. Dhal, D. Mohan, and R. Prasad, Atmos. Pollut. Res. 9, 755 (2018).

    CAS  Google Scholar 

  14. S. Rajoba, L. Jadhav, R. Kalubarme, P. Patil, S. Varma, and B. Wani, Ceram. Int. 44, 6886 (2018).

    CAS  Google Scholar 

  15. M. Waikar, A. Shaikh, and R. Sonkawade, Polym. Bull. 76, 4703 (2019).

    CAS  Google Scholar 

  16. A. Sarkar, A. Kumar, V. Kumar, and S. Kumar, Electrochim. Acta 167, 126 (2015).

    CAS  Google Scholar 

  17. A. Fujishima and S. Gosavi, Electrochim. Acta 299, 34 (2019).

    Google Scholar 

  18. S. Kulkarni, D. Puthusseri, S. Thakur, and A. Banpurkar, Electrochim. Acta 231, 460 (2017).

    CAS  Google Scholar 

  19. M. Nwankwo, A. Nwanya, A. Agbogu, A. Ekwealor, P. Ejikeme, R. Bucher, R. Osuji, M. Maaza, and F. Ezema, Vacuum 158, 206 (2018).

    CAS  Google Scholar 

  20. M. Waikar, A. Shaikh, and R. Sonkawade, Vacuum 161, 168 (2019).

    CAS  Google Scholar 

  21. B. Lokhande, R. Ambare, R. Mane, and S. Bharadwaj, Curr. Appl. Phys. 13, 985 (2013).

    Google Scholar 

  22. L. Jinlong and L. Tongxiang, Ceram. Int. 43, 6168 (2017).

    Google Scholar 

  23. B. Fugure and B. Lokhande, Appl. Phys. A 123, 1 (2017).

    Google Scholar 

  24. M. Baneto, A. Enesca, Y. Lare, K. Jondo, K. Napo, and A. Duta, Ceram. Int. 40, 8397 (2014).

    CAS  Google Scholar 

  25. R. Han, S. Xing, Z. Ma, Y. Wu, and Y. Gao, J. Mater. Sci. 47, 3822 (2012).

    CAS  Google Scholar 

  26. S. Dey, G. Dhal, D. Mohan, and R. Prasad, J. Sci. Adv. Mater. 44, 7 (2019).

    Google Scholar 

  27. R. Sonkawade, A. Shaikh, I. Bagal, N. Chodankar, M. Waikar, and P. Shinde, J. Mater. Sci. Mater. Electron. 29, 11151 (2018).

    CAS  Google Scholar 

  28. B. Patil, S. Patil, and C. Lokhande, Electroanalysis 4, 2023 (2014).

    Google Scholar 

  29. M. Abdul, Q. Siddiqui, S. Ali, H. Fei, and H. Roshan, Earth-Science Rev. 181, 1 (2018).

    Google Scholar 

  30. N. Chodankar, G. Gund, D. Dubal, and C. Lokhande, RSC Adv. 4, 61503 (2014).

    CAS  Google Scholar 

  31. G. Gund, D. Dubal, S. Shinde, and C. Lokhande, Appl. Mater. Interfaces 6, 3176 (2014).

    CAS  Google Scholar 

  32. G. Wang, Z. Ma, Y. Fan, and G. Shao, Phys. Chem. Chem. Phys. 17, 23017 (2015).

    CAS  Google Scholar 

  33. G. Gund, D. Dubal, S. Shinde, and C. Lokhande, ACS Appl. Mater. Interfaces. 6, 3176 (2014).

    CAS  Google Scholar 

  34. T. Brousse, D. Belanger, and J. Long, J. Electrochem. Soc. 162, A5185 (2015).

    CAS  Google Scholar 

  35. P. Shinde, V. Lokhande, T. Ji, and C. Lokhande, J. Colloid Interface Sci. 498, 202 (2017).

    CAS  Google Scholar 

  36. A. Laheäär, P. Przygocki, Q. Abbas, and F. Béguin, Electrochem. Commun. 60, 21 (2015).

    Google Scholar 

  37. Y. Liu, J. Zhang, and R. Hu, Ceram. Int. 43, 4427 (2017).

    CAS  Google Scholar 

  38. Y. Ding, J. Yang, G. Yang, and P. Li, Ceram. Int. 41, 9980 (2015).

    CAS  Google Scholar 

  39. R. Kalubarme, H. Jadhav, and C. Park, Electrochim. Acta 87, 457 (2013).

    CAS  Google Scholar 

  40. Y. Chen, W. Qin, R. Fan, J. Wang, and B. Chen, J. Nanosci. Nanotechnol. 15, 9760 (2015).

    Google Scholar 

  41. X. Bai, X. Tong, Y. Gao, W. Zhu, C. Fu, J. Ma, and H. Sun, Electrochim. Acta 281, 525 (2018).

    CAS  Google Scholar 

  42. N. Chodankar, D. Dubal, G. Gund, and C. Lokhande, J. Energy Chem. 25, 463 (2016).

    Google Scholar 

  43. D. Dubal, R. Holze, and P. Gomez-Romero, Chem. Plus. Chem. 80, 944 (2015).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Inter-University Accelerator Center (IUAC), New Delhi, India, for financial support (UFR No. 60326) and PIFC, Department of Physics, Shivaji University, Kolhapur for providing all characterization facilities. Furthermore, the authors are thankful to Dr. R.P. Deshpande and Prof. S.K. Chakarvarti for their valuable discussions during the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Sonkawade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, A.A., Waikar, M.R. & Sonkawade, R.G. Effect of Different Concentrations of KMnO4 Precursor on Supercapacitive Properties of MnO Thin Films. J. Electron. Mater. 48, 8116–8128 (2019). https://doi.org/10.1007/s11664-019-07648-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07648-y

Keywords

Navigation