Skip to main content
Log in

Synthesis, Characterization, and Electrical and Thermal Stability of Semiconducting π-Conjugated Polyazomethines Containing a Tetraphenylthiophene-Oxazole Unit

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A series of polyazomethines (PAM-01, PAM-02, PAM-03) containing various amounts of tetraphenylthiophene-oxazole (TPTP-o) moieties were produced by the polycondensation of a diamine precursor (TPTP-o) with equimolar proportions of two aromatic dialdehydes [isophthalaldehyde (1,3 IPA) and terephthalaldehyde (1,4 TPA)]. The TPTP-o precursor was successfully synthesized in three steps. The synthesized TPTP-o and the polymers (PAM-01, PAM-02, PAM-03) were characterized by ultraviolet–visible (UV–Vis) spectroscopy, FT-IR spectroscopy, x-ray diffraction (XRD), 1H-NMR, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. The effects of the TPTP-o units in the PAM on the insertion with azo linkages were studied with respect to conductivity and thermal stability. The room-temperature DC electrical conductivity of the PAM films was found to range from 9.59 × 10−7 S/cm to 9.73 × 10−7 S/cm. UV absorption at 342 nm confirmed the formation of azo (–C=N–) linkages in the polymer, which is helpful for electron conductivity throughout the polymer network. All three PAMs had a glass transition temperature (Tg) between 260°C and 267°C, and T10% thermal degradation values of thermally stable polyazomethines were in the range of 517–530°C. All three PAMs showed moderate solubility in organic solvents and inherent viscosity of between 0.31 dL/g and 0.35 dL/g. The XRD study indicated that all three PAMs were amorphous in nature, with a broad peak in the vicinity of 20°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gerard, A. Chaubey, and B. Malhotra, Biosens. Bioelectron. 17, 345 (2002).

    Article  CAS  Google Scholar 

  2. J. Janata and M. Josowicz, Nat. Mater. 2, 19 (2003).

    Article  CAS  Google Scholar 

  3. C.J. Yang and S.A. Jenekhe, Chem. Mater. 3, 878 (1991).

    Article  CAS  Google Scholar 

  4. C. Wang, S. Shieh, E. Legoff, and M.G. Kanatzidis, Macromolecules 29, 3147 (1996).

    Article  CAS  Google Scholar 

  5. P.H. Salunkhe, Y.S. Patil, V.B. Patil, Y.H. Navale, I.A. Dhole, V.P. Ubale, N.N. Maldar, and A.A. Ghanwat, J. Polym. Res. 25, 147 (2018).

    Article  Google Scholar 

  6. S.A.P. Guarin, M. Bourgeaux, S. Dufresne, and W.G. Skene, J. Org. Chem. 72, 2631 (2007).

    Article  CAS  Google Scholar 

  7. Ö. Usluer, M. Abbas, G. Wantz, L. Vignau, L. Hirsch, E. Grana, C. Brochon, E. Cloutet, and G. Hadziioannou, ACS Macro Lett. 3, 1134 (2014).

    Article  CAS  Google Scholar 

  8. M.E.M. Zayed, A.M. Asiri, and S.A. Khan, J. Fluoresc. 26, 937 (2016).

    Article  CAS  Google Scholar 

  9. R. Adams, J.E. Bullock, and W.C. Wilson, J. Am. Chem. Soc. 45, 521 (1923).

    Article  CAS  Google Scholar 

  10. C.S. Marvel and H.W. Hill, J. Am. Chem. Soc. 72, 4819 (1950).

    Article  CAS  Google Scholar 

  11. C.J. Yang and S.A. Jenekhe, Chem. Mater. 6, 196 (1994).

    Article  CAS  Google Scholar 

  12. C.J. Yang and S.A. Jenekhe, Macromolecules 28, 1180 (1995).

    Article  CAS  Google Scholar 

  13. S. Barik, T. Bletzacker, and W.G. Skene, Macromolecules 45, 1165 (2012).

    Article  CAS  Google Scholar 

  14. Y.S. Patil, P.H. Salunkhe, Y.H. Navale, V.P. Ubale, V.B. Patil, N.N. Maldar, and A.A. Ghanwat, AIP Conf. Proc. 1989, 020034 (2018).

    Article  Google Scholar 

  15. S. Barik and W.G. Skene, Polym. Chem. 2, 1091 (2011).

    Article  CAS  Google Scholar 

  16. S. Barik, and W.G. Skene, Eur. J. Org. Chem. 2013, 2563 (2013).

  17. A. Iwan, M. Palewicz, A. Chuchmała, L. Gorecki, A. Sikora, B. Mazurek, and G. Pasciak, Synth. Met. 162, 143 (2012).

    Article  CAS  Google Scholar 

  18. F.C. Tsai, C. Chang, C. Liu, W.C. Chen, and S.A. Jenekhe, Macromolecules 38, 1958 (2005).

    Article  CAS  Google Scholar 

  19. K.I. Aly, M.A. Abbady, S.A. Mahgoub, and M.A. Hussein, Express Polym. Lett. 1, 197 (2007).

    Article  CAS  Google Scholar 

  20. Y.S. Patil, J.N. Mahidrakar, P.H. Salunkhe, V.P. Ubale, and A.A. Ghanwat, J. Macromol. Sci. Part A Pure Appl. Chem. 55, 572 (2018).

    Article  CAS  Google Scholar 

  21. Y. Imai, N.N. Maldar, and M.A. Kakimoto, J. Polym. Sci., Part A: Polym. Chem. 22, 3771 (1984).

    CAS  Google Scholar 

  22. Y.S. Patil, P.H. Salunkhe, Y.H. Navale, V.B. Patil, V.P. Ubale, and A.A. Ghanwat, Polym. Bull. https://doi.org/10.1007/s00289-019-02856-2 (2019).

  23. S.S. Ankushrao, Y.S. Patil, V.P. Ubale, N.N. Maldar, and A.A. Ghanwat, J. Macromol. Sci. Part A Pure Appl. Chem. 54, 411 (2017).

    Article  CAS  Google Scholar 

  24. B. Kaczmarczyk, J. Mol. Struct. 1048, 179 (2013).

    Article  CAS  Google Scholar 

  25. S.H. Hsiao and G.S. Liou, Polym. J. 34, 917 (2002).

    Article  CAS  Google Scholar 

  26. S. Patra, S. Lenka, and P.L. Nayak, J. Appl. Polym. Sci. 32, 5071 (1986).

    Article  CAS  Google Scholar 

  27. S.S. Ankushrao, V.N. Kadam, Y.S. Patil, V.P. Ubale, N.N. Maldar, and A.A. Ghanwat, J. Macromol. Sci. Part A Pure Appl. Chem. 54, 124 (2017).

    Article  CAS  Google Scholar 

  28. H. Niu, Y. Huang, X. Bai, and X. Li, Mater. Chem. Phys. 86, 33 (2004).

    Article  CAS  Google Scholar 

  29. B. Jarzabek, J. Weszka, M. Domanski, J. Jurusik, and J. Cisowski, J. Non-Cryst. Solids 354, 856 (2008).

    Article  CAS  Google Scholar 

  30. V.E. Bochenkov and G.B. Sergeev, Adv. Colloid Interface Sci. 116, 245 (2005).

    Article  CAS  Google Scholar 

  31. J.N. Mahindrakar, Y.S. Patil, P.H. Salunkhe, S.S. Ankushrao, V.N. Kadam, V.P. Ubale, and A.A. Ghanwat, J. Macromol. Sci. Part A Pure Appl. Chem. 55, 658 (2018).

    Article  CAS  Google Scholar 

  32. D. Bera, V. Padmanabhan, and S. Banerjee, Macromolecules 48, 4541 (2015).

    Article  CAS  Google Scholar 

  33. P.H. Salunkhe, S.S. Ankushrao, Y.S. Patil, J.N. Mahidrakar, V.N. Kadam, V.P. Ubale, and A.A. Ghanwat, J. Macromol. Sci. Part A Pure Appl. Chem. 55, 377 (2018).

    Article  CAS  Google Scholar 

  34. Y.S. Patil, P.H. Salunkhe, J.N. Mahindrakar, S.S. Ankushrao, V.N. Kadam, V.P. Ubale, A.A. Ghanwat, and J. Therm, Anal. Calorim. 135, 3057 (2019).

    Article  CAS  Google Scholar 

  35. D.W. van Krevelen, Polymer 16, 615 (1975).

    Article  Google Scholar 

  36. P.H. Salunkhe, Y.S. Patil, V.N. Kadam, J.N. Mahindrakar, V.P. Ubale, and A.A. Ghanwat, J. Macromol. Sci. Part A Pure Appl. Chem. 56, 299 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first author gratefully acknowledges financial support from the University Grants Commission, New Delhi, India, Junior and Senior research fellowship (Y.S.P.) in science for CSIR-UGC NET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ghanwat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, Y.S., Mahindrakar, J.N., Salunkhe, P.H. et al. Synthesis, Characterization, and Electrical and Thermal Stability of Semiconducting π-Conjugated Polyazomethines Containing a Tetraphenylthiophene-Oxazole Unit. J. Electron. Mater. 48, 8067–8075 (2019). https://doi.org/10.1007/s11664-019-07584-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07584-x

Keywords

Navigation