Skip to main content
Log in

Hydrothermal Preparation of Fe2O3 Nanoparticles for Fe-Air Battery Anodes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Fe2O3 nanoparticles were synthesized from iron nitrate [Fe(NO3)3·9H2O] by hydrothermal method for Fe-air battery anodes. The crystal structure and morphology of the obtained Fe2O3 powder were studied by x-ray diffraction and scanning electron microscopy. Fe2O3/acetylene black (AB) composite electrodes were fabricated by mixing the synthesized Fe2O3 nanoparticles with AB carbon and were then subjected to electrochemical measurements. Results indicated that the duration of hydrothermal treatment significantly influences the morphology and size of synthesized Fe2O3. The morphology and particle size of Fe2O3 also affect the electrochemical properties of Fe2O3/AB composite electrodes, viz., smaller particles provide greater capacity than larger ones. The resistance of electrodes gradually increases during cycling, thereby causing a decrease in the capacity of Fe2O3/AB electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.R. Narayanan, G.K.S. Prakash, A. Manohar, B. Yang, S. Malkhandi, and A. Kindler, Solid State Ion. 216, 105 (2012).

    Article  CAS  Google Scholar 

  2. H. Wang, Y. Liang, M. Gong, Y. Li, W. Chang, T. Mefford, J. Zhou, J. Wang, T. Regier, F. Wei, and H. Dai, Nat. Commun. 3, 917 (2012).

    Article  Google Scholar 

  3. M.K. Ravikumar, A.S. Rajan, S. Sampath, K.R. Priolkar, and A.K. Shukla, J. Electrochem. Soc. 162, A2339 (2015).

    Article  CAS  Google Scholar 

  4. T. Kim, Y. Ohata, J. Kim, C.K. Rhee, J. Miyawaki, and S. Yoon, Carbon 80, 698 (2014).

    Article  CAS  Google Scholar 

  5. R.D. McKerracher, C.P. de Leon, R.G.A. Wills, A.A. Shah, and F.C. Walsh, ChemPlusChem 80, 323 (2015).

    Article  CAS  Google Scholar 

  6. C. Yang, A.K. Manohar, and S.R. Narayanan, J. Electrochem. Soc. 164, A418 (2017).

    Article  CAS  Google Scholar 

  7. A. Inoishi, Y.W. Ju, S. Ida, and T. Ishihara, J. Power Sources 229, 12 (2013).

    Article  CAS  Google Scholar 

  8. C. Kao and K. Chou, J. Power Sources 195, 2399 (2010).

    Article  CAS  Google Scholar 

  9. B. Cui, H. Xin, S. Liu, X. Liu, Y. Hao, Q. Guo, and S. Licht, J. Electrochem. Soc. 164, A88 (2017).

    Article  CAS  Google Scholar 

  10. A. Paulraj, Y. Kiros, B. Skarman, and H. Vidarsson, J. Electrochem. Soc. 164, A1665 (2017).

    Article  CAS  Google Scholar 

  11. C. Chakkaravarthy, P. Perasamy, S. Jegannathan, and K.I. Vasu, J. Power Sources 35, 21 (1991).

    Article  CAS  Google Scholar 

  12. K. Micka and Z. Zabransky, J. Power Sources 19, 315 (1987).

    Article  CAS  Google Scholar 

  13. J. Cerny and K. Micka, J. Power Sources 25, 111 (1989).

    Article  CAS  Google Scholar 

  14. A.K. Manohar, C. Yang, and S.R. Narayanan, J. Electrochem. Soc. 162, A1864 (2015).

    Article  CAS  Google Scholar 

  15. A.K. Shukla, M.K. Ravikumar, and T.S. Balasubramanian, J. Power Sources 51, 29 (1994).

    Article  CAS  Google Scholar 

  16. P. Periasamy, B.R. Babu, and S.V. Iyer, J. Power Sources 62, 9 (1996).

    Article  CAS  Google Scholar 

  17. C.A.C. Souza, I.A. Carlos, M.C. Lopes, G.A. Finazzi, and M.R.H. de Almeida, J. Power Sources 132, 288 (2004).

    Article  CAS  Google Scholar 

  18. A.K. Manohar, C. Yang, S. Malkhandi, B. Yang, G.K.S. Prakash, and S.R. Narayanan, J. Electrochem. Soc. 159, A2148 (2012).

    Article  CAS  Google Scholar 

  19. S. Malkhandi, B. Yang, A.K. Manohar, G.K.S. Prakash, and S.R. Narayanan, J. Am. Chem. Soc. 135, 347 (2013).

    Article  CAS  Google Scholar 

  20. A.K. Manohar, C. Yang, S. Malkhandi, G.K.S. Prakash, and S.R. Narayanan, J. Electrochem. Soc. 160, A2078 (2013).

    Article  CAS  Google Scholar 

  21. E. Shangguan, F. Li, J. Li, Z. Chang, Q. Li, X.Z. Yuan, and H. Wang, J. Power Sources 291, 29 (2015).

    Article  CAS  Google Scholar 

  22. J.O. Gil Posada and P.J. Hall, J. Power Source 268, 810 (2014).

    Article  Google Scholar 

  23. J.O. Gil Posada and P.J. Hall, J. Appl. Electrochem. 46, 451 (2016).

    Article  Google Scholar 

  24. J.O. Gil Posada and Peter J. Hall, Int. J. Hydrogen Energy 41, 20807 (2016).

    Article  Google Scholar 

  25. H.A. Figueredo-Rodrıguez, R.D. McKerracher, M. Insausti, A. Garcia Luis, C. Ponce de Leon, C. Alegre, V. Baglio, A.S. Arico, F.C. Walsh, and A. Rechargeable, J. Electrochem. Soc. 164, A1148 (2017).

    Article  Google Scholar 

  26. Q. Wang and Y. Wang, ACS Appl. Mater. Interfaces 8, 10334 (2016).

    Article  CAS  Google Scholar 

  27. B.T. Hang, M. Egashira, I. Watanabe, S. Okada, J. Yamaki, S. Yoon, and I. Mochida, J. Power Sources 143, 256 (2005).

    Article  CAS  Google Scholar 

  28. B.T. Hang, T. Watanabe, M. Egashira, S. Okada, J. Yamaki, S. Hata, S.H. Yoon, and I. Mochida, J. Power Sources 150, 261 (2005).

    Article  CAS  Google Scholar 

  29. B.T. Hang, H. Hayashi, S.H. Yoon, S. Okada, and J. Yamaki, J. Power Sources 178, 393 (2008).

    Article  CAS  Google Scholar 

  30. B.T. Hang, T. Watanabe, M. Egashira, I. Watanabe, S. Okada, and J. Yamaki, J. Power Sources 155, 461 (2006).

    Article  CAS  Google Scholar 

  31. B.T. Hang, S.H. Yoon, S. Okada, and J. Yamaki, J. Power Sources 168, 522 (2007).

    Article  CAS  Google Scholar 

  32. H. Kitamura, L. Zhao, B.T. Hang, S. Okadaand, and J. Yamaki, J. Electrochem. Soc. 159, A720 (2012).

    Article  CAS  Google Scholar 

  33. G.P. Kalaignan, V.S. Muralidharan, and K.I. Vasu, J. Appl. Electrochem. 17, 1083 (1987).

    Article  CAS  Google Scholar 

  34. D.W. Shoesmith, P. Taylor, M.G. Bailey, and B. Ikeda, Electrochim. Acta 23, 903 (1978).

    Article  CAS  Google Scholar 

  35. C.A. Caldas, M.C. Lopes, and I.A. Carlos, J. Power Sources 74, 108 (1998).

    Article  CAS  Google Scholar 

  36. D.A.J. Rand, J. Power Sources 4, 101 (1979).

    Article  CAS  Google Scholar 

  37. K. Vijayamohanan, A.K. Shukla, and S. Sathyanarayana, J. Electroanal. Chem. 289, 55 (1990).

    Article  CAS  Google Scholar 

  38. M. Chamoun, B. Skarman, H. Vidarsson, R.I. Smith, S. Hull, M. Lelis, D. Milcius, and D. Noreus, J. Electrochem. Soc. 164, A1251 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 103.02-2018.04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Thi Bui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bui, H.T., Vu, T.M. Hydrothermal Preparation of Fe2O3 Nanoparticles for Fe-Air Battery Anodes. J. Electron. Mater. 48, 7123–7130 (2019). https://doi.org/10.1007/s11664-019-07522-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07522-x

Keywords

Navigation