Skip to main content
Log in

Effect of Ion Pairs on Nonlinear Optical Properties of Crystal Violet: Surfactants, Nano-droplets, and In Vitro Culture Conditions

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Crystal violet (CV) has nonlinear optical (NLO) properties that make it suitable for photodynamic therapy. In this respect, Z-scan technique is applied to find the influence of surfactants and nano-droplets on NLO properties of CV. Nonlinear absorption coefficient and nonlinear refractive index can be further determined. The NLO parameters are also enhanced by the increase in anionic surfactant concentrations, while they remain constant with the rise in cationic ones. Moreover, the NLO parameters are extremely improved in dye-doped water droplets prepared with anionic surfactant and a continuous phase of low-polarity oils. It has been demonstrated that the interaction of ion pairs can change linear optical and NLO properties of CV that in turn can change the charge density distribution. To study the behavior of dye during in vitro culture conditions, the effect of cell culture media and fetal bovine serum on NLO properties of CV was examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Shokoufi and ShN Hajibaba, Opt. Laser Technol. 112, 198 (2019).

    Article  CAS  Google Scholar 

  2. T. Geethakrishnan and P.K. Palanisamy, Opt. Commun. 270, 424 (2007).

    Article  CAS  Google Scholar 

  3. S.J. Mathews, S.C. Kumar, L. Giribabu, and S.V. Rao, Opt. Commun. 280, 206 (2007).

    Article  CAS  Google Scholar 

  4. M. Sheik-bahae, A.A. Said, and E.W. Van Stryland, Opt. Lett. 14, 955 (1989).

    Article  CAS  Google Scholar 

  5. G. Wang, A.A. Baker-Murray, X. Zhang, D. Bennett, J.J. Wang, J. Wang, K. Wang, and W.J. Blau, Opt. Mater. Express 9, 483 (2019).

    Article  Google Scholar 

  6. Z. Bai, J. He, Y. Wang, K. Wang, R. Li, and L. Zhang, J. Lumin. 192, 675 (2017).

    Article  CAS  Google Scholar 

  7. M. Khani, M.K. Nezhad, and H.R. Moghaddam Rezaeiun, Eur. Phys. J. 133, 338 (2018).

    Google Scholar 

  8. S.V. Yazdi, M. Darroudi, A. Imanparast, F. Hataminia, and A. Sazgarnia, Iran. J. Med. Phys. 15, 308 (2018).

    Google Scholar 

  9. A. Imanparast, M. Bakhshizadeh, R. Salek, and A. Sazgarnia, Photodiagn. Photodyn. Ther. 23, 295 (2018).

    Article  CAS  Google Scholar 

  10. S.V. Rao and T.S. Prashant, Chem. Phys. Lett. 514, 98 (2011).

    Article  Google Scholar 

  11. S. Sharifi, M. Khazaei-Nezhad, A. Sangsefidi, and F. Rakhshanizadeh, J. Electron. Mater. 48, 4310 (2019).

    Article  CAS  Google Scholar 

  12. M. Hoseini, A. Sazgarnia, and S. Sharifi, J. Fluoresc. (2019). https://doi.org/10.1007/s10895-019-02366-4.

    Article  Google Scholar 

  13. S. Sharifi, S.M. Shavakandi, and A.A. Heidari, Nanoelectron. Optoelectron. 14, 1 (2019).

    Article  Google Scholar 

  14. S. Sharifi, G. Leisan, and A. Azarpour, J. Fluoresc. 28, 1439 (2018).

    Article  CAS  Google Scholar 

  15. A. Azarpour, S. Sharifi, and F. Rakhshanizadeh, J. Mol. Liq. 252, 279 (2018).

    Article  CAS  Google Scholar 

  16. S. Peyghami, S. Sharifi, F. Rakhshanizadeh, and Kh Alizadeh, J. Mol. Liq. 246, 157 (2017).

    Article  CAS  Google Scholar 

  17. M. Wielgus, M. Samoć, and W. Bartkowiak, J. Mol. Liq. 222, 125 (2016).

    Article  CAS  Google Scholar 

  18. V.S. Sukumaran and A. Ramalingam, Spectrochim. Acta A Mol. Biomol. Spectrosc. 63, 673 (2006).

    Article  Google Scholar 

  19. K. Iliopoulos, I. Guezguez, A.P. Kerasidou, A. El-Ghayoury, D. Branzea, G. Nita, N. Avarvari, H. Belmabrouk, S. Couris, and B. Sahraoui, Dyes Pigments 101, 229 (2014).

    Article  CAS  Google Scholar 

  20. B. Kulyk, B. Sahraoui, O. Krupka, V. Kapustianyk, V. Rudyk, E. Berdowska, S. Tkaczyk, and I. Kityk, J. Appl. Phys. 106, 093102 (2009).

    Article  Google Scholar 

  21. B. Kulyk, D. Guichaoua, A. Ayadi, A. El-Ghayoury, and B. Sahraoui, Org. Electron. 36, 1 (2016).

    Article  CAS  Google Scholar 

  22. I. Rau, F. Kajzar, J. Luc, B. Sahraoui, and G. Boudebs, J. Opt. Soc. Am. B 25, 10 (2008).

    Article  Google Scholar 

  23. J. Huo, Sh Yan, X. Hou, Y. Li, L. Yin, and N. Arulsamy, J. Mol. Struct. 1099, 239 (2015).

    Article  CAS  Google Scholar 

  24. J.D. Bhawalkar, N.D. Kumar, C.F. Zhao, and P.N. Prasad, J. Clin. Laser Med. Surg. 15, 201 (1997).

    Article  CAS  Google Scholar 

  25. R. Docampo, S.N. Moreno, R.P. Muniz, F.S. Cruz, and R.P. Mason, Science 220, 1292 (1983).

    Article  CAS  Google Scholar 

  26. R. Chen and X. Zheng, & Jiang. Opt. Express 25, 7507 (2017).

    Article  CAS  Google Scholar 

  27. X. Zheng, Y. Zhang, R. Chen, X. Cheng, Zh Xu, and T. Jiang, Opt. Express 23, 15616 (2015).

    Article  CAS  Google Scholar 

  28. J. Zhang, H. Ouyang, X. Zheng, J. You, R. Chen, T. Zhou, Y. Sui, Y. Liu, X. Cheng, and T. Jiang, Opt. Lett. 43, 243 (2018).

    Article  CAS  Google Scholar 

  29. J. Zhang, T. Jiang, X. Zheng, C. Shen, and X. Cheng, Opt. Lett. 42, 3371 (2017).

    Article  CAS  Google Scholar 

  30. M. Abd-Lefdil, A. Belayachi, S. Pramodini, and P. Poornesh, Laser Phys. 24, 035404 (2014).

    Article  Google Scholar 

  31. S. Pramodini and P. Poornesh, Opt. Laser Technol. 62, 12 (2014).

    Article  CAS  Google Scholar 

  32. V. Rudenko, Y. Garbovskiy, G. Klimusheva, and T. Mirnaya, J. Mol. Liq. 267, 56 (2018).

    Article  CAS  Google Scholar 

  33. M. Wielgus, M. Samoć, and W. Bartkowiak, J. Mol. Liq. 222, 125 (2016).

    Article  CAS  Google Scholar 

  34. I.V. Kityk, M. Guignard, V. Nazabal, X.H. Zhang, J. Troles, F. Smektala, B. Sahraoui, and G. Boudebs, Physica B 391, 222 (2007).

    Article  CAS  Google Scholar 

  35. T. Jiang, R. Miao, J. Zhao, Zh Xu, T. Zhou, K. Wei, J. You, X. Zheng, Zh Wang, and X. Cheng, Chin. Opt. Lett. 17, 020005 (2019).

    Article  Google Scholar 

  36. K. Wei, T. Jiang, Zh Xu, J. Zhou, J. You, Y. Tang, H. Li, R. Chen, X. Zheng, Sh Wang, K. Yin, Zh Wang, J. Wang, and X. Cheng, Laser Photonics Rev. 12, 1800128 (2018).

    Article  Google Scholar 

  37. C.S. Oliveira, E.L. Bastos, E.L. Duarte, R. Itri, and M.S. Baptista, Langmuir 22, 8718 (2006).

    Article  CAS  Google Scholar 

  38. Y.G. Sıdır and I. Sıdır, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 102, 286 (2013).

    Article  Google Scholar 

  39. J.G. Breitzer, D.D. Dlott, L.K. Iwaki, S.M. Kirkpatrick, and T.B. Rauchfuss, J. Phys. Chem. A 103, 6930 (1999).

    Article  CAS  Google Scholar 

  40. R. Zaleśny, O. Loboda, K. Iliopoulos, G. Chatzikyriakos, S. Couris, G. Rotas, and N. Tagmatarchis, Phys. Chem. Chem. Phys. 12, 373 (2010).

    Article  Google Scholar 

  41. M. Stähelin, D.M. Burl, and J.E. Rice, Chem. Phys. Lett. 191, 245 (1992).

    Article  Google Scholar 

  42. K. Sendhil, C. Vijayan, and M.P. Kothiyal, Opt. Laser Technol. 38, 512 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheil Sharifi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanadan, H., Hoseini, M., Sazgarnia, A. et al. Effect of Ion Pairs on Nonlinear Optical Properties of Crystal Violet: Surfactants, Nano-droplets, and In Vitro Culture Conditions. J. Electron. Mater. 48, 7417–7426 (2019). https://doi.org/10.1007/s11664-019-07516-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07516-9

Keywords

Navigation