Skip to main content

Advertisement

Log in

Enhanced Energy Harvesting Using Multilayer Piezoelectric Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, multi-layer ceramics (MLC) are fabricated for vibrational energy harvesting using 0.5 mol.% CuO added 0.69Pb(Zr0.47Ti0.53)O3-0.31Pb(Zn0.4Ni0.6)1/3Nb2/3O3 (0.5CPZT-PZNN). 0.5CPZT-PZNN has a high transduction coefficient of 20,367 m2/N with a high Curie temperature of 300°C. The effect of the number of layers (n-layers = 1, 3, 5 and 7) on the active power density is systematically investigated. MLC-based piezoelectric energy harvesting (PEH) can increase the active power output by approximately 2.5 times as compared to bulk PEH (n = 1). For the bulk ceramic, PEH active power density is found to be 21 mW/cm3 , whereas maximum active power density is obtained for n = 5 (49.7 mW/cm3). However, upon increasing layers (n = 7), active power density is decreased due to high capacitance. The result shows that the MLC-based PEH can increase output current/voltage and decrease the matching resistive load. In addition, effect of the load resistance on the voltage, current and active power density is also discussed. Finally, a comparison of various piezoelectric material based power output in MLC-system has been also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Priya and D.J. Inman, Energy Harvesting Technologies (New York: Springer, 2009).

    Book  Google Scholar 

  2. J.A. Paradiso and T. Starner, IEEE Pervasive Comput. 4, 18 (2005).

    Article  Google Scholar 

  3. P.D. Mitcheson, E.M. Yeatman, G.K. Rao, A.S. Holmes, and T.C. Green, Proc. IEEE 96, 1457 (2008).

    Article  Google Scholar 

  4. S.-G. Kim, S. Priya, and I. Kanno, MRS Bull. 37, 1039 (2012).

    Article  CAS  Google Scholar 

  5. L. Mateu, M. Echeto, and F. De Borja, Review of energy harvesting techniques and applications for microelectronics, in VLSI Circuits and Systems II, SPIE the International Society for Optical Engineering, vol. 5837 (2005), pp. 359–373.

  6. S. Priya, J. Electroceram. 19, 167 (2007).

    Article  Google Scholar 

  7. H. Li, C. Tian, and Z.D. Deng, Appl. Phys. Rev. 1, 041301 (2014).

    Article  Google Scholar 

  8. H. Kulah and K. Najafi, An electromagnetic micro power generator for low-frequency environmental vibrations, in 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest, (IEEE, 2004) pp. 237–240.

  9. S. Roundy, E.S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J.M. Rabaey, P.K. Wright, and V. Sundararajan, IEEE Pervasive Comput. 4, 28 (2005).

    Article  Google Scholar 

  10. S. Meninger, J.O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan, and J.H. Lang, IEEE Trans. VLSI Syst. 9, 64 (2001).

    Article  Google Scholar 

  11. K.A. Cook-Chennault, N. Thambi, and A.M. Sastry, Smart Mater. Struct. 17, 043001 (2008).

    Article  Google Scholar 

  12. F.U. Khan, J. Renew. Sustain. Ener. 8, 044702 (2016).

    Article  Google Scholar 

  13. K.Q. Fan, B. Yu, Y.M. Zhu, Z.H. Liu, and L.S. Wang, Int. J. Mod. Phys. B 31, 1741011 (2017).

    Article  Google Scholar 

  14. F.U. Khan and Izhar, Sadhana Acad. Proc. Eng. Sci. 41, 397 (2016).

    Google Scholar 

  15. C.G. Cooley, Mech. Syst. Signal Process. 94, 237 (2017).

    Article  Google Scholar 

  16. Y.L. Zhang, T.Y. Wang, A. Zhang, Z.T. Peng, D. Luo, R. Chen, and F. Wang, Rev. Sci. Instrum. 87, 125001 (2016).

    Article  Google Scholar 

  17. M. Lallart, S. Pruvost, and D. Guyomar, Phys. Lett. A 375, 3921 (2011).

    Article  CAS  Google Scholar 

  18. A.C.M. De Queiroz, Analog Integr. Circuits Signal Process. 85, 57 (2015).

    Article  Google Scholar 

  19. Y.T. Hu, T. Hu, and Q. Jiang, Acta Mech. Solida Sin. 20, 296 (2007).

    Article  Google Scholar 

  20. A. Erturk and D.J. Inman, Smart Mater. Struct. 18, 025009 (2009).

    Article  Google Scholar 

  21. H.W. Kim, A. Batra, S. Priya, K. Uchino, D. Markley, R.E. Newnham, and H.F. Hofmann, Jpn. J. Appl. Phys. 1, 6178 (2004).

    Article  Google Scholar 

  22. J. Palosaari, M. Leinonen, J. Hannu, J. Juuti, and H. Jantunen, J. Electroceram. 28, 214 (2012).

    Article  CAS  Google Scholar 

  23. T.-B. Xu, E.J. Siochi, J.H. Kang, L. Zuo, W. Zhou, X. Tang, and X. Jiang, Smart Mater. Struct. 22, 065015 (2013).

    Article  Google Scholar 

  24. S.L. Vatanabe, G.H. Paulino, and E.C.N. Silva, Comput. Methods Appl. Mech. Eng. 266, 205 (2013).

    Article  Google Scholar 

  25. Y. Shi, H. Yao, and Y.W. Gao, J. Alloy. Compd. 693, 989 (2017).

    Article  CAS  Google Scholar 

  26. Z.T. Yang, D.P. Zeng, H. Wang, C.L. Zhao, and J.W. Tan, Smart Mater. Struct. 24, 075029 (2015).

    Article  Google Scholar 

  27. Y. Yang, L. Tang, and H. Li, Smart Mater. Struct. 18, 115025 (2009).

    Article  Google Scholar 

  28. Y. Yan, A. Marin, Y. Zhou, and S. Priya, Energy Harvest. Syst. 1, 189 (2014).

    Google Scholar 

  29. S.-J. Jeong, M.-S. Kim, J.-S. Song, and H.-K. Lee, Sensors Actuators A: Phys. 148, 158 (2008).

    Article  CAS  Google Scholar 

  30. H.S. Kim, J.-H. Kim, and J. Kim, Int. J. Precis. Eng. Manuf. 12, 1129 (2011).

    Article  Google Scholar 

  31. T.-B. Xu, E.J. Siochi, J.H. Kang, L. Zuo, W. Zhou, X. Tang, and X. Jiang, in A Piezoelectric PZT Ceramic Multilayer Stack for Energy Harvesting Under Dynamic Forces (American Society of Mechanical Engineers, 2011), p. 1193.

  32. H.-C. Song, H.-C. Kim, C.-Y. Kang, H.-J. Kim, S.-J. Yoon, and D.-Y. Jeong, J. Electroceram. 23, 301 (2009).

    Article  CAS  Google Scholar 

  33. I.T. Seo, T.G. Lee, D.H. Kim, J. Hur, J.H. Kim, S. Nahm, J. Ryu, and B.Y. Choi, Sensors Actuators A: Phys. 238, 71 (2016).

    Article  CAS  Google Scholar 

  34. I.T. Seo, Y.J. Cha, I.Y. Kang, J.H. Choi, S. Nahm, T.H. Seung, and J.H. Paik, J. Am. Ceram. Soc. 94, 3629 (2011).

    Article  CAS  Google Scholar 

  35. C.J. Stringer, T.R. Shrout, and C.A. Randall, J. Appl. Phys. 101, 054107 (2007).

    Article  Google Scholar 

  36. N. Kong, D.S. Ha, A. Erturk, and D.J. Inman, J. Intell. Mater. Syst. Struct. 21, 1293 (2010).

    Article  Google Scholar 

  37. H. Edelmann, Siemens Forsch Entwickl. 10, 16 (1980).

    Google Scholar 

  38. M. Jabbari, M. Ghayour, and H.R. Mirdamadi, J. Eng. Mater. Technol. 139, 031008 (2017).

    Article  Google Scholar 

  39. N. Jonassen, Human body capacitance: static or dynamic concept?[ESD], in Electrical Overstress/Electrostatic Discharge Symposium Proceedings (Cat. No. 98TH8347) (IEEE, 1998), p. 111.

  40. H. Kim, S. Priya, H. Stephanou, K. Uchino, and I.E.E.E. Trans, Ultrason. Ferroelectr. Freq. Control 54, 1851 (2007).

    Article  Google Scholar 

  41. D. Zhu, A. Almusallam, S. Beeby, J. Tudor, and N. Harris, in A bimorph multi-layer piezoelectric vibration energy harvester (Power MEMS, Belgium, 2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Tae Seo.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflict of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S., Seo, IT. & Nahm, S. Enhanced Energy Harvesting Using Multilayer Piezoelectric Ceramics. J. Electron. Mater. 48, 6964–6971 (2019). https://doi.org/10.1007/s11664-019-07501-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07501-2

Keywords

Navigation