Skip to main content
Log in

Impact of Sputtering Power on Properties of CdO:ZnO Thin Films Synthesized by Composite Method for Oxygen Gas Sensing Application

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The present work reports the impact of RF sputtering power on CdO:ZnO (3:1) nanocomposite thin films deposited by sputtering. The structural, morphological, optical and electrical properties of CdO:ZnO thin films deposited at 40 W, 60 W, 80 W and 100 W RF sputtering power were investigated. The structural and morphological results show that high sputtering power improves the crystallinity of thin films. The thin film deposited at 80 W has (111) and (002) phases corresponding to mixed cubic and wurtzite crystal structure, whereas surface morphology of 100 W thin film shows that particles are densely agglomerate. The energy-dispersive x-ray spectrum shows the presence of Cd and Zn atoms in the CdO:ZnO nanocomposite samples. The films show 75–85% transparency in the visible region and a large variation in optical bandgaps from 2.6 eV to 3.5 eV was observed for the samples deposited at 40–100 W with lowest value for the 80 W thin film. I–V characteristics of all the CdO:ZnO thin films show an ohmic nature and resistance varies from 104 Ω to 109 Ω, suitable for resistive based gas sensor. The optimized thin film of CdO:ZnO deposited at 80 W was used for oxygen gas sensing applications 25–200°C operating temperatures and 25.4% sensor response was observed. The response and recovery times were found 10–20 s. Overall study reflects appreciable impact of RF sputtering power on different parameters under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Ray and T. Pal, J. Mater. Chem. A 5, 9465 (2017).

    Article  Google Scholar 

  2. Y. Li, F. Xu, Z. Lin, X. Sun, Q. Peng, Y. Yuan, S. Wang, Z. Yang, X. He, and Y. Li, Nanoscale 9, 14476 (2017).

    Article  Google Scholar 

  3. S. Sikarwar, B.C. Yadav, G.I. Dzhardimalieva, N.D. Golubeva, and P. Srivastava, RSC Adv. 8, 20534 (2018).

    Article  Google Scholar 

  4. J.K. Rajput and L.P. Purohit, Nanosci. Technol. 3, 1 (2016). https://doi.org/10.15226/2374-8141/3/2/00140.

    Article  Google Scholar 

  5. H.B. Hassan and R.H. Tammam, Solid State Ion 320, 325 (2018).

    Article  Google Scholar 

  6. B. Gerdes, M. Jehle, N. Lass, L. Riegger, A. Spribille, M. Linse, F. Clement, R. Zengerle, and P. Koltay, Sol. Energy Mater. Sol. Cells 180, 83 (2018). https://doi.org/10.1016/j.solmat.2018.02.022.

    Article  Google Scholar 

  7. S. Sikarwar, S. Singh, R. Srivastava, B.C. Yadav, and V.V. Tyagi, Smart Mater. Struct. 26, 105047 (2017).

    Article  Google Scholar 

  8. V.S. Rana, J.K. Rajput, T.K. Pathak, and L.P. Purohit, J. Alloys Compd. 764, 724 (2018).

    Article  Google Scholar 

  9. D. Haridas and V. Gupta, Sens. Actuators B Chem. 182, 741 (2013).

    Article  Google Scholar 

  10. S. Sikarwar, B.C. Yadav, S. Singh, G.I. Dzhardimalieva, S.I. Pomogailo, N.D. Golubeva, and A.D. Pomogailo, Sens. Actuators B Chem. 232, 283 (2016).

    Article  Google Scholar 

  11. B. Bhowmik, P. Bhattacharyya, and I.E.E.E. Trans, Nanotechnology 16, 180 (2017).

    Google Scholar 

  12. J.K. Rajput, T.K. Pathak, V. Kumar, M. Kumar, and L.P. Purohit, Surf. Interfaces 6, 11 (2017).

    Article  Google Scholar 

  13. D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y.K. Mishra, and R. Adelung, Adv. Mater. 26, 1541 (2014).

    Article  Google Scholar 

  14. Y.K. Mishra and R. Adelung, Mater. Today 21, 631 (2018).

    Article  Google Scholar 

  15. J.K. Rajput, T.K. Pathak, V. Kumar, H.C. Swart, and L.P. Purohit, Phys. B 535, 314 (2018).

    Article  Google Scholar 

  16. F.C. Eze, Mater. Chem. Phys. 89, 205 (2005).

    Article  Google Scholar 

  17. T.K. Pathak, J.K. Rajput, V. Kumar, L.P. Purohit, H.C. Swart, and R.E. Kroon, J. Colloid Interface Sci. 487, 378 (2017).

    Article  Google Scholar 

  18. C.V. Reddy and B.B.J. Shim, J. Phys. Chem. Solids 112, 20 (2018).

    Article  Google Scholar 

  19. A. Sharma, M. Tomar, and V. Gupta, Sens. Actuators B Chem. 156, 743 (2011).

    Article  Google Scholar 

  20. P.S. Shewale, G.L. Agawane, S.W. Shin, A.V. Moholkar, J.Y. Lee, J.H. Kim, and M.D. Uplane, Sens. Actuators B Chem. 177, 695 (2013).

    Article  Google Scholar 

  21. P.H. Rai, Y.S. Kim, H.M. Song, M.K. Song, and Y.T. Yu, Sens. Actuators B Chem. 165, 133 (2012).

    Article  Google Scholar 

  22. V.V. Ganbavle, S.K. Patil, S.I. Inamdar, S.S. Shinde, and K.Y. Rajpure, Sens. Actuators A Phys. 216, 328 (2014).

    Article  Google Scholar 

  23. C.S. Park, D.B. Mahadik, and H.H. Park, RSC Adv. 5, 66384 (2015).

    Article  Google Scholar 

  24. A.G. Imer, Superlattices Microstruct. 92, 278 (2016).

    Article  Google Scholar 

  25. L. Yua, J. Wei, Y. Luo, Y. Tao, M. Lei, X. Fana, W. Yana, and P. Peng, Sens. Actuators B Chem. 204, 96 (2014).

    Article  Google Scholar 

  26. Ö. Coban and S. Tekmen, Sens. Actuators B Chem. 186, 781 (2013).

    Article  Google Scholar 

  27. L. Peng, Q. Zeng, H. Song, P. Qin, M. Lei, B. Tie, and T. Wang, Appl. Phys. A Mater. Sci. Process. 105, 392 (2011).

    Google Scholar 

  28. Y. Liu, T. Hang, Y. Xie, Z. Bao, J. Song, H. Zhang, and E. Xie, Sens. Actuators B Chem. 160, 266 (2011).

    Article  Google Scholar 

  29. N. Al-Hardan, M.J. Abdullah, and A.A. Aziz, Appl. Surf. Sci. 257, 8993 (2011).

    Article  Google Scholar 

  30. A. Yu, J. Qian, H. Pan, Y. Cui, M. Xu, L. Tu, Q. Chai, Q. Chai, and X. Zhou, Sens. Actuators B Chem. 158, 9 (2011).

    Article  Google Scholar 

  31. Q. Zhou, Z. Ji, B. Hu, C. Chen, L. Zhao, and C. Wang, Mater. Lett. 61, 531 (2007).

    Article  Google Scholar 

  32. T.K. Subramanyam, B.S. Naidu, and S. Uthanna, Appl. Surf. Sci. 169, 529 (2001).

    Article  Google Scholar 

  33. C. Harish, K.S. Barshilia, and J. Rajam, Nanosci. Nanotechnol. Lett. 3, 300 (2011).

    Article  Google Scholar 

  34. P. Dhivya, A.K. Prasad, and M. Sridharan, J. Alloys Compd. 620, 109 (2015).

    Article  Google Scholar 

  35. Joint Committee Powder Diffraction Spectrum card no. 05-0640.

  36. Joint Committee Powder Diffraction Spectrum card no. 14-3651.

  37. P. Hsieh, T. Li, C. Chung, H. Peng, and J. Lin, Adv. Mater. Res. 579, 118 (2012).

    Article  Google Scholar 

  38. K. Ahn, J. Park, B. Shin, W. Lee, G.Y. Yeom, and J. Myoung, Appl. Surf. Sci. 271, 216 (2013).

    Article  Google Scholar 

  39. B. Saha, R. Thapa, and K.K. Chattopadhyay, Solid State Commun. 145, 33 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Purohit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, J.K., Pathak, T.K. & Purohit, L.P. Impact of Sputtering Power on Properties of CdO:ZnO Thin Films Synthesized by Composite Method for Oxygen Gas Sensing Application. J. Electron. Mater. 48, 6640–6646 (2019). https://doi.org/10.1007/s11664-019-07464-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07464-4

Keywords

Navigation