Skip to main content
Log in

HgCdTe Diode Dark Current Modeling: Rule 07 Revisited for LW and VLW

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Rule 07 is very convenient for dark current estimation of high-quality HgCdTe P-on-n photodiodes used in focal-plane arrays for science imaging, in which the diode behavior is dominated by the n-type absorption layer. Its popularity is partly due to the fact that it is very easy to use, while giving an accurate description of the evolution of the dark current with both temperature and cutoff. This modeling is actually the result of an empirical fit to experimental data from Teledyne Imaging Systems (TIS), short-wave infrared (SWIR) data between 300 K and 160 K, middle-wave infrared (MWIR) data around 80 K, and long-wave infrared (LWIR) data above liquid-nitrogen temperature (78 K). P-on-n diodes processed at CEA-LETI and SOFRADIR also follow this rule at high temperature and low cutoffs. However, at higher cutoffs (LWIR and very LWIR) and temperatures below 78 K, the measured dark current deviates from this rule. Indeed, in this wavelength range, the observed activation energy tends to be lower than the value given by Rule 07, closer to the semiconductor gap, which is more physically meaningful. This effect is also consistent with TIS data taken for the first characterizations of LWIR diodes for NEOCam at low temperatures. In this communication, the measured dataset is first presented and then discussed. Then, a new empirical rule describing the dark current of P-on-n HgCdTe diodes is proposed. This relation seems more suitable for this kind of wavelength and temperature (LWIR and VLWIR below 79 K) than the well-known Rule 07. Hence, Rule 07 represents a rough overestimation of the dark current for this range of wavelengths. The new expression should describe the low-temperature dark current in the LWIR and VLWIR regions more accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.E. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, J. Electron. Mater. 37, 1406 (2008). https://doi.org/10.1007/s11664-008-0426-3.

    Article  Google Scholar 

  2. W.E. Tennant, J. Electron. Mater. 37, 1030 (2010). https://doi.org/10.1007/s11664-010-1084-9.

    Article  Google Scholar 

  3. O. Gravrand, L. Mollard, C. Largeron, N. Baier, E. DeBorniol, and P. Chorier, J. Electron. Mater. 38, 1733 (2009). https://doi.org/10.1007/s11664-009-0795-2.

    Article  Google Scholar 

  4. V. Destefanis and A. Kerlain, J. Electron. Mater. 45, 4511 (2016). https://doi.org/10.1007/s11664-016-4535-0.

    Article  Google Scholar 

  5. N. Baier, C. Cervera, O. Gravrand, L. Mollard, C. Lobre, G. Destefanis, G. Bourgeois, J.P. Zanatta, O. Boulade, and V. Moreau, J. Electron. Mater. 44, 3144 (2015). https://doi.org/10.1007/s11664-015-3851-0.

    Article  Google Scholar 

  6. C. Fulk, W. Radford, D. Buell, J. Bangs, and K. Rybnicek, J. Electron. Mater. 44, 2977 (2015). https://doi.org/10.1007/s11664-015-3740-6.

    Article  Google Scholar 

  7. A. Kerlain, A. Brunner, D. Sam-Giao, N. Pére-Laperne, L. Rubaldo, V. Destefanis, F. Rochette, and C. Cervera, J. Electron. Mater. 45, 4557 (2016). https://doi.org/10.1007/s11664-016-4506-5.

    Article  Google Scholar 

  8. D. Eich, W. Schirmacher, S. Hanna, K.M. Mahlein, P. Fries, and H. Figgemeier, J. Electron. Mater. 46, 5448 (2017). https://doi.org/10.1007/s11664-017-5596-4.

    Article  Google Scholar 

  9. P. C. Klipstein, E. Avnon, D. Azulai, Y. Benny, R. Fraenkel, A. Glozman, E. Hojman, O. Klin, L. Krasovitsky, L. Langof, I. Lukomsky, M. Nitzani, I. Shtrichman, N. Rappaport, N. Snapi, E. Weiss, A. Tuito, Proc. SPIE 98190T (2016). https://doi.org/10.1117/12.2222776.

  10. A. Rogalski, M. Kopytko, P. Martyniuk, Proc. SPIE 1017715 (2017). https://doi.org/10.1117/12.2272817.

  11. F. Callewaert, A.M. Hoang, and M. Razeghi, Appl. Phys. Lett. 104, 053508 (2014). https://doi.org/10.1063/1.4864403.

    Article  Google Scholar 

  12. G.L. Hansen, J.L. Schmit, and T.N. Casselman, J. Appl. Phys. 53, 7099 (1982). https://doi.org/10.1063/1.330018.

    Article  Google Scholar 

  13. N. Baier, L. Mollard, J. Rothman, G. Destéfanis, P. Ballet, G. Bourgeois, J. P. Zanatta, M. Tchagaspanian, S. Courtas, P. Fougères, C. Pautet, P. Pidancier, L. Rubaldo, Proc. SPIE 729823 (2009). https://doi.org/10.1117/12.820343.

  14. L. Mollard, G. Destefanis, J. Rothman, N. Baier, S. Bisotto, P. Ballet, J. P. Chamonal, P. Castelein, J. P. Zanatta, M. Tchagaspanian, A. M. Papon, J. P. Barnes, F. Henry, S. Gout, G. Bourgeois, C. Pautet, P. Fougères, Proc. SPIE 69400F (2008). https://doi.org/10.1117/12.780582.

  15. L. Mollard, G. Destefanis, G. Bourgeois, A. Ferron, N. Baier, O. Gravrand, J.P. Barnes, A.M. Papon, F. Milesi, A. Kerlain, and L. Rubaldo, J. Electron. Mater. 40, 1830 (2011). https://doi.org/10.1007/s11664-011-1692-z.

    Article  Google Scholar 

  16. J. Rothman, J. Meilhan, G. Perrais, J.P. Belle, and O. Gravrand, J. Electron. Mater. 35, 1174 (2006). https://doi.org/10.1007/s11664-006-0238-2.

    Article  Google Scholar 

  17. N. Péré-Laperne, R. Taalat, J. Berthoz, L. Rubaldo, E. Carrère, L. Dargent, A. Kerlain, Proc. SPIE 99330H (2016). https://doi.org/10.1117/12.2241440.

  18. L. Puig, K. G. Isaak, I. Escudero, D. Martin, P.-E. Crouzet, N. Rando, Proc. SPIE 81460 V (2011). https://doi.org/10.1117/12.899533.

  19. L. Puig, G. L. Pilbratt, A. Heske, I. Escudero Sanz, P.-E. Crouzet, Proc. SPIE 99041 W (2016). https://doi.org/10.1117/12.2230964.

  20. O. Gravrand, E. Borniol, S. Bisotto, L. Mollard, and G. Destefanis, J. Electron. Mater. 36, 981 (2007). https://doi.org/10.1007/s11664-007-0151-3.

    Article  Google Scholar 

  21. P. Pidancier, A. Delannoy, K. Madet, P. Chorier, N. Remoué, T. Dartois, Proc. SPIE 105631 V (2014). https://doi.org/10.1117/12.2304217.

  22. N. Baier, L. Mollard, O. Gravrand, G. Bourgeois, J.-P. Zanatta, G. Destefanis, O. Boulade, V. Moreau, F. Pinsard, L. Tauziède, A. Bardoux, L. Rubaldo, A. Kerlain, J.-C. Peyrard, Proc. SPIE 87042P-1 (2013). https://doi.org/10.1117/12.2016369.

  23. P. Castelein, N. Baier, O. Gravrand, L. Mollard, D. Brellier, F. Rochette, A. Kerlain, L. Rubaldo, Y. Reibel, G. Destefanis, Proc. SPIE 90702Y (2014). https://doi.org/10.1117/12.2054023.

  24. O. Gravrand, J. Rothman, C. Cervera, N. Baier, C. Lobre, J.P. Zanatta, and B. Fieque, J. Electron. Mater. 45, 4532 (2016). https://doi.org/10.1007/s11664-016-4516-3.

    Article  Google Scholar 

  25. C. McMurtry, D. Lee, J. Beletic, C.A. Chen, R.T. Demers, M. Dorn, D. Edwall, C. Bacon Fazar, W.J. Forrest, F. Liu, A.K. Mainzer, J.L. Pipher, and A. Yulius, Opt. Eng. 52, 091804 (2013). https://doi.org/10.1117/1.OE.52.9.091804.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the French Centre National d’Etudes Spatiales (CNES), LabEx FOCUS (ANR-11-LABX-0013), and the European Space Agency for their support of some parts of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Gravrand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baier, N., Gravrand, O., Lobre, C. et al. HgCdTe Diode Dark Current Modeling: Rule 07 Revisited for LW and VLW. J. Electron. Mater. 48, 5233–5240 (2019). https://doi.org/10.1007/s11664-019-07299-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07299-z

Keywords

Navigation