Skip to main content
Log in

Crystal Structures and Phase-Transitions Analysis of the Double Perovskites Sr2Co1−xNixTeO6 (x = 0.25, 0.5 and 0.75) Using X-ray Powder Diffraction, Raman and Infrared Spectroscopy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The reaction between the complexes of double perovskite formula Sr2Co1−xNixTeO6 in different stoichiometric proportions (x = 0.25, 0.5 and 0.75) have been processed in polycrystalline form by solid– state reaction mode in air. Based on the Rietveld refinements of x-ray powder diffraction data, the crystal structures and phase transitions, at room temperature of this double perovskite series are reported. The materials crystallize in a monoclinically distorted perovskite structure (the two compositions with x = 0.5 and 0.75 belong the to I2/m space group, while the composition with x = 0.25 crystallize in P21/n space group). We found a good agreement between the lattice parameters of this series and those of the two materials Sr2CoTeO6 and Sr2NiTeO6 with x = 0 and 1, respectively. The linear evolution of crystalline parameters proves the realization of the Vegard Law. The effect of the partial substitution of Co by Ni was also seen in the spectra of Raman and infrared, where a band shift was observed with increased nickel content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.S. Roth, J. Res. Natl. Bur. Stand. 58, 75 (1957).

    Article  Google Scholar 

  2. M. Ochi, I. Yamada, K. Ohgushi, Y. Kusano, M. Mizumaki, R. Takahashi, S. Yagi, N. Nishiyama, T. Inoue, and T. Irifune, Inorg. Chem. 52, 3985 (2013).

    Article  Google Scholar 

  3. M.C. Knapp and P.M. Woodward, J. Solid State Chem. 179, 1076 (2006).

    Article  Google Scholar 

  4. M.T. Anderson, K.B. Greenwood, G.A. Taylor, and K.R. Poeppelmeier, Prog. Solid State Chem. 22, 197 (1993).

    Article  Google Scholar 

  5. Yu.E Smirnov, T.D. Smirnova, and I.A. Zvereva, Rus. J. Gen. Chem. 75, 1359 (2005).

    Article  Google Scholar 

  6. R. Mukherjee, B. Ghosh, S. Saha, C. Bharti, and T.P. Sinha, J. Rare Earths. 32, 334 (2014).

    Article  Google Scholar 

  7. T. Yang, T. Perkisas, J. Hadermann, M. Croft, A. Ignatov, and M. Greenblatt, J. Solid State Chem. 183, 2689 (2010).

    Article  Google Scholar 

  8. S. Zhao, K. Yamamoto, S. Iikubo, S. Hayase, and T. Ma, J. Phys. Chem. Solids 117, 117 (2018).

    Article  Google Scholar 

  9. T. Sugahara, M. Ohtaki, and K. Suganuma, J. Asian Ceram. Soc. 1, 282 (2013).

    Article  Google Scholar 

  10. P.A. Kumar, S. Ivanov, C. Ritter, R. Vijayaraghavan, R. Mathieu, P. Nordblad, N. Sadovskaya, and D.D. Sarma, J. Alloys Compd. 693, 1096 (2017).

    Article  Google Scholar 

  11. Z.W. Song and B.G. Liu, Chin. Phys. B 22, 047506 (2013).

    Article  Google Scholar 

  12. V.M. Goldschmidt, Naturwissenschaften 14, 477 (1926).

    Article  Google Scholar 

  13. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  Google Scholar 

  14. A. Zaraq, B. Orayech, A. Faik, J.M. Igartua, A. Jouanneaux, and A. El Bouari, Polyhedron 110, 119 (2016).

    Article  Google Scholar 

  15. D.-D. Han, W. Gao, N.-N. Li, R.-L. Tang, H. Li, Y.-M. Ma, Q.-L. Cui, P.-W. Zhu, and X. Wang, Chin. Phys. B 22, 059101 (2013).

    Article  Google Scholar 

  16. B. Orayech, L. Ortega-San-Martín, I. Urcelay-Olabarria, L. Lezama, T. Rojo María, I. Arriortua, and J.M. Igartua, Dalton Trans 44, 13716 (2015).

    Article  Google Scholar 

  17. B. Orayech, A. Faik, and J.M. Igartua, Polyhedron 123, 265 (2017).

    Article  Google Scholar 

  18. A. Faik, D. Orobengoa, E. Iturbe-Zabalo, and J.M. Igartua, J. Solid State Chem. 192, 273 (2012).

    Article  Google Scholar 

  19. L.A. Baum, S.J. Stewart, R.C. Mercader, and J.M. Grenèche, Hyperfine Interact. 156, 157 (2004).

    Article  Google Scholar 

  20. Y. Tang, R. Paria Sena, M. Avdeev, P.D. Battle, J.M. Cadogan, J. Hadermann, and E.C. Hunter, J. Solid State Chem. 253, 347 (2017).

    Article  Google Scholar 

  21. K. Yamamura, M. Wakeshima, and Y. Hinatsu, J. Solid State Chem. 179, 605 (2006).

    Article  Google Scholar 

  22. P.G.R. Achary, S.K. Dehury, and R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 29, 6805 (2018).

    Article  Google Scholar 

  23. T. Zheng, J. Wu, D. Xiao, and J. Zhu, Prog. Mater Sci. 98, 552 (2018).

    Article  Google Scholar 

  24. A. Khouidmi, H. Baltache, and A. Zaoui, Chin. Phys. Lett. 34, 076103 (2017).

    Article  Google Scholar 

  25. Y. Huang, R. Dass, Z.-L. Xing, and J.B. Goodenough, Science 312, 254 (2006).

    Article  Google Scholar 

  26. X. Zhang, Y. Jiang, X. Hu, L. Sun, and Y. Ling, Electron. Mater. Lett. 14, 147 (2018).

    Article  Google Scholar 

  27. S.A. Dar, V. Srivastava, U.K. Sakalle, and V. Parey, Eur. Phys. J. Plus 133, 64 (2018).

    Article  Google Scholar 

  28. M.S. Augsburger, M.C. Viola, J.C. Pedregosa, A. Muñoz, J.A. Alonso, and R.E. Carbonio, J. Mater. Chem. 15, 993 (2005).

    Article  Google Scholar 

  29. L. Ortega-San Martin, J.P. Chapman, L. Lezama, J.S. Marcos, J. Rodrıguez-Fernandez, M.I. Arriortua, and T. Rojo, J. Mater. Chem. 15, 183 (2005).

    Article  Google Scholar 

  30. YuN Venevtsev, E.D. Politova, and G.S. Zhdanov, Ferroelectrics 8, 489 (1974).

    Article  Google Scholar 

  31. L. Ortega-San Martin, J.P. Chapman, G. Cuello, J. Gonzalez-Calbet, M.I. Arriortua, and T. Rojo, Z. Anorg. Allg. Chem. 631, 2127 (2005).

    Article  Google Scholar 

  32. T. Roisnel and J. Rodríquez-Carvajal, Mater. Sci. Forum 378–381, 118 (2001).

    Article  Google Scholar 

  33. A.R. Denton and N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991).

    Article  Google Scholar 

  34. K. Momma and F. Izumi, J. Appl. Crystallogr. 41, 653 (2008).

    Article  Google Scholar 

  35. A.M. Glazer, Acta Cryst. A31, 756 (1975).

    Article  Google Scholar 

  36. E. Kroumova, M.I. Aroyo, J.M. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, H. Wondratschek, Phase Transit. 76 (2003) 155. http://www.cryst.ehu.es/.

  37. Y. Tamraoui, B. Manoun, F. Mirinioui, R. Haloui, and P. Lazor, J. Alloys Compd. 603, 86 (2014).

    Article  Google Scholar 

  38. A.P. Ayala, I. Guedes, E.N. Silva, M.S. Augsburger, M.C. del Viola, and J.C. Pedregosa, J. Appl. Phys. 101, 123511 (2007).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge University Hassan II, Casablanca, Morocco, for their support. We are grateful to Engineers (in Service Centrale d’Analyse (CSA) de l’Unités d’Appui Technique à la Recherche Scientifique (UATRS)” CNRS- Rabat, Morocco) for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Zaraq or B. Orayech.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaraq, A., Orayech, B., Igartua, J.M. et al. Crystal Structures and Phase-Transitions Analysis of the Double Perovskites Sr2Co1−xNixTeO6 (x = 0.25, 0.5 and 0.75) Using X-ray Powder Diffraction, Raman and Infrared Spectroscopy. J. Electron. Mater. 48, 4866–4876 (2019). https://doi.org/10.1007/s11664-019-07269-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07269-5

Keywords

Navigation