Skip to main content
Log in

Thermoelectric Properties of Impurity-Doped Mg2Sn

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The Hall effect and thermoelectric properties of impurity-doped semiconducting Mg2Sn, fabricated using a process combining chemical reduction and spark plasma sintering, were investigated. A small amount of the oxides, hydroxide, or carbonate of IA, IIIA, IB, IIIB, and VB group elements [Al2O3, Bi2O3, Sb2O3, La(OH)3, Li2CO3, Ag2O, CuO, Ga2O3, In2O3, Na2CO3, or Y2O3] were added to improve the thermoelectric performance of Mg2Sn. X-ray diffraction was used for phase identification, and the patterns revealed that the major phase was cubic Mg2Sn, while the minor phases were orthorhombic and trigonal Mg2Sn, MgO, Sn, and intermetallics obtained by the chemical reduction of the additives. The doping of Bi, Sb, Li, Na, and Ga elements into Mg2Sn was found to significantly affect the carrier transport properties. The maximum values of the dimensionless thermoelectric figure-of-merit (ZT) for the p-type Mg2Sn fabricated using Li2CO3 and Na2O3 were 0.25 at 674 K and 0.11 at 577 K, respectively. However, the ZT values for the n-type Mg2Sn fabricated using Bi2O3 and Sb2O3 were 0.057 at 476 K and 0.058 at 574 K, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.H. Ando Junior, A.L.O. Maran, and N.C. Henao, Renew. Sustain. Energy Rev. 91, 376 (2018).

    Article  Google Scholar 

  2. W. He, G. Zhang, X. Zhang, J. Ji, G. Li, and X. Zhao, Appl. Energy 143, 1 (2015).

    Article  Google Scholar 

  3. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  4. R.G. Morris, R.D. Redin, and G.C. Danielson, Phys. Rev. 109, 1909 (1958).

    Article  Google Scholar 

  5. C.B. Vining, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC Press, 1995), p. 277.

    Google Scholar 

  6. V.K. Zaitsev, M.I. Fedorov, I.S. Eremin, and E.A. Gurieva, Thermoelectrics Handbook Macro to Nano, ed. D.M. Rowe Chapter 29, (Boca Raton: CRC Press, 2006),

    Google Scholar 

  7. J. de Boor, T. Dasgupta, and E. Müller, Materials Aspect of Thermoelectricity, ed. C. Uher (Boca Raton: CRC Press, 2016), p. 159.

    Chapter  Google Scholar 

  8. J. Tani and H. Kido, Physica B 364, 218 (2005).

    Article  Google Scholar 

  9. J. Zhao, Z. Liu, J. Reid, K. Takarabe, T. Iida, B. Wang, U. Yoshiya, and J.S. Tse, J. Mater. Chem. A 3, 19774 (2015).

    Article  Google Scholar 

  10. G. Kim, J. Kim, H. Lee, S. Cho, I. Lyo, S. Noh, B.-W. Kim, S.W. Kim, K.H. Lee, and W. Lee, Scr. Mater. 116, 11 (2016).

    Article  Google Scholar 

  11. M. Akasaka, T. Iida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai, and N. Hamada, J. Appl. Phys. 104, 013703 (2008).

    Article  Google Scholar 

  12. J. Tani and H. Kido, Intermetallics 32, 72 (2013).

    Article  Google Scholar 

  13. H.Y. Chen and N. Savvides, J. Electron. Mater. 38, 1056 (2009).

    Article  Google Scholar 

  14. H.Y. Chen and N. Savvides, J. Electron. Mater. 39, 1792 (2010).

    Article  Google Scholar 

  15. H.Y. Chen and N. Savvides, J. Cryst. Growth 312, 2328 (2010).

    Article  Google Scholar 

  16. H.Y. Chen, N. Savvides, T. Dasgupta, C. Stiewe, and E. Mueller, Phys. Status Solidi A 207, 2523 (2010).

    Article  Google Scholar 

  17. T.-H. An, S.-M. Choi, I.-H. Kim, S.-U. Kim, W.-S. Seo, J.-Y. Kim, and C. Park, Renew. Energy 42, 23 (2012).

    Article  Google Scholar 

  18. S.-M. Choi, T.H. An, W.-S. Seo, C. Park, I.-H. Kim, and S.-U. Kim, J. Electron. Mater. 41, 1071 (2012).

    Article  Google Scholar 

  19. X. Li, S. Li, S. Feng, H. Zhong, and H. Fu, J. Electron. Mater. 45, 2895 (2016).

    Article  Google Scholar 

  20. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).

    Article  Google Scholar 

  21. M.B.A. Bashir, S. Mohd Said, M.F.M. Sabri, D.A. Shnawah, and M.H. Elsheikh, Renew. Sustain. Energy Rev. 37, 569 (2014).

    Article  Google Scholar 

  22. W. Liu, H.S. Kim, S. Chen, Q. Jie, B. Lv, M. Yao, Z. Ren, C.P. Opeil, S. Wilson, C.W. Chu, and Z. Ren, Proc. Natl. Acad. Sci. U. S. A. 112, 3269 (2015).

    Article  Google Scholar 

  23. W. Liu, J. Zhou, Q. Jie, Y. Li, H.S. Kim, J. Bao, G. Chen, and Z. Ren, Energy Environ. Sci. 9, 530 (2016).

    Article  Google Scholar 

  24. J. Tani and H. Kido, Physica B 407, 3493 (2012).

    Article  Google Scholar 

  25. Y.R. Jin, Z.Z. Feng, L.Y. Ye, Y.L. Yan, and Y.X. Wang, RSC Adv. 6, 48728 (2016).

    Article  Google Scholar 

  26. Y. Isoda, S. Tada, T. Nagai, H. Fujiu, and Y. Shinohara, J. Electron. Mater. 39, 1531 (2010).

    Article  Google Scholar 

  27. X. Liu, Y. Wang, J.O. Sofo, T. Zhu, L.-Q. Chen, and X. Zhao, J. Mater. Res. 30, 2578 (2015).

    Article  Google Scholar 

  28. G.H. Grosch and K.-J. Range, J. Alloys Compd. 235, 250 (1996).

    Article  Google Scholar 

  29. P. Cannon and E.T. Conlin, Science 145, 487 (1964).

    Article  Google Scholar 

  30. K.-J. Range, G.H. Grosch, and M. Andratschke, J. Alloys Compd. 244, 170 (1996).

    Article  Google Scholar 

  31. T.I. Dyuzheva, N.A. Bendeliani, L.N. Dzhavadov, T.N. Kolobyanina, and N.A. Nikolaev, J. Alloys Compd. 223, 74 (1995).

    Article  Google Scholar 

  32. R. Suganuma, J. Phys. Soc. Jpn. 14, 685 (1959).

    Article  Google Scholar 

  33. H. Le-Quoc, A. Lacoste, E.K. Hlil, A. Bès, T.T. Vinh, D. Fruchart, and N. Skryabina, J. Alloys Compd. 509, 9906 (2011).

    Article  Google Scholar 

  34. C.R. Clark, C. Wright, C. Suryanarayana, E.G. Baburaj, and F.H. Froes, Mater. Lett. 33, 71 (1997).

    Article  Google Scholar 

  35. G. Urretavizcaya and G.O. Meyer, J. Alloys Compd. 339, 211 (2002).

    Article  Google Scholar 

  36. B. Sahoo, W.A. Adeagbo, F. Stromberg, W. Keune, E. Schuster, R. Peters, P. Entel, S. Lüttjohann, A. Gondorf, W. Sturhahn, J. Zhao, T.S. Toellner, and E.E. Alp, Phase Transit. 79, 839 (2006).

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by Grants-in-Aid for Scientific Research (C) (Nos. 15K06520 and 18K04791) from the Ministry of Education, Sports, and Culture, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Tani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tani, Ji., Shinagawa, T. & Chigane, M. Thermoelectric Properties of Impurity-Doped Mg2Sn. J. Electron. Mater. 48, 3330–3335 (2019). https://doi.org/10.1007/s11664-019-07093-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07093-x

Keywords

Navigation