Skip to main content
Log in

Modeling and Experimental Verification of Intermetallic Compounds Grown by Electromigration and Thermomigration for Sn-0.7Cu Solders

  • TMS2018 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Printed circuit boards that use fine pitch technology have a greater risk of open-circuit failure, due to void formations caused by the growth of intermetallic compounds. This failure mode is reported to be a result of electromigration (EM) damage. Current stressing occurs when current flows in a solder bump, thereby producing EM. Joule heating is also a significant occurrence under current stressing conditions, and induces thermomigration (TM) in solder bumps during EM. This study investigated the intermetallic compound (IMC) growth kinetics for Sn-0.7Cu solders, modeled by EM, TM, and chemical diffusion. The modeling results concurred with the observed kinetics of IMC growth. Electromigration influenced the growth of IMCs most significantly for a current density of 10 kA/cm2. The effect of TM on the IMC growth had to be considered for a thermogradient of 870°C/cm. However, the effect of chemical diffusion was insignificant on IMC growth, specifically for a current density of 10 kA/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.C.C. Yeh, W.J. Choi, and K.N. Tu, Appl. Phys. Lett. 80, 580 (2002).

    Article  Google Scholar 

  2. S.W. Liang, Y.W. Chang, and C. Chen, Appl. Phys. Lett. 88, 172108 (2006).

    Article  Google Scholar 

  3. S.H. Chiu, T.L. Shao, and C. Chen, Appl. Phys. Lett. 88, 022110 (2006).

    Article  Google Scholar 

  4. R. Labie, P. Limaye, K.W. Lee, C.J. Berry, E. Beyne, and I.D. Wolf, in 3rd Electronics System Integration Technology Conference ESTC, pp. 1–5 (2010).

  5. F. Ouyang, H. Hsu, Y. Su, and T. Chang, J. Appl. Phys. 112, 023505 (2012).

    Article  Google Scholar 

  6. B.H. Chao, X. Zhang, S. Chae, and P.S. Ho, Microelectron. Reliab. 49, 253 (2009).

    Article  Google Scholar 

  7. S. Chae, X. Zhang, K. Lu, H. Chao, P.S. Ho, M. Ding, P. Su, T. Uehling, and L.N. Ramanthan, J. Mater. Sci. - Mater. Electron. 18, 247 (2007).

    Article  Google Scholar 

  8. H. Gan and K.N. Tu, J. Appl. Phys. 97, 063514 (2005).

    Article  Google Scholar 

  9. S. Chae, B. Chao, X. Zhang, J. Im, and P.S. Ho, in 57th Electronic Components and Technology Conference, pp. 1442–1449 (2007).

  10. W.K. Choi and H.M. Lee, J. Electron. Mater. 29, 1207 (2000).

    Article  Google Scholar 

  11. J. Yoon and S. Jung, J. Mater. Sci. 39, 4211 (2004).

    Article  Google Scholar 

  12. C.Y. Liu, L. Ke, Y.C. Chuang, and S.J. Wang, J. Appl. Phys. 100, 083702 (2006).

    Article  Google Scholar 

  13. L. Xu, J.H.L. Pang, K.H. Prakash, and T.H. Low, IEEE Trans. Compon. Packag. Technol. 28, 408 (2005).

    Article  Google Scholar 

  14. K. Yamanaka, Y. Tsukada, and K. Suganuma, Microelectron. Reliab. 47, 1280 (2007).

    Article  Google Scholar 

  15. C. Chen, H.M. Tong, and K.N. Tu, Annu. Rev. Mater. Res. 40, 531 (2010).

    Article  Google Scholar 

  16. L.S. Darken, Metall. Mater. Trans. B 41, 277 (2010).

    Google Scholar 

  17. P. Shewmon, Thermo- and electrotransport in solids (Warrendale: TMS, 1989) chapter 7.

    Google Scholar 

  18. N. Saunders and A.P. Miodownik, Binary Alloy Phase Diagram, ed. T.B. Massalski (Russell Township: ASM International, 1990), p. 1481.

    Google Scholar 

  19. B. Chao, S. Chae, X. Zhang, K. Lu, J. Im, and P.S. Ho, Acta Mater. 55, 2805 (2007).

    Article  Google Scholar 

  20. G.A. Sullivan, J. Phys. Chem. Solids 28, 347 (1967).

    Article  Google Scholar 

  21. A. Khosla and H.B. Huntington, J. Phys. Chem. Solids 36, 395 (1975).

    Article  Google Scholar 

  22. R. Grone, J. Phys. Chem. Solids 20, 88 (1961).

    Article  Google Scholar 

  23. M.Y. Hsieh and H.B. Huntington, J. Phys. Chem. Solids 39, 867 (1978).

    Article  Google Scholar 

  24. H.L. Chao, Ph.D. Thesis, The University of Texas at Austin, Texas (2009).

  25. W. Hsu and F. Ouyang, Mater. Chem. Phys. 165, 66 (2015).

    Article  Google Scholar 

  26. H. Hsiao and C. Chen, Appl. Phys. Lett. 94, 092107 (2009).

    Article  Google Scholar 

  27. C. Wei, C.F. Chen, P.C. Liu, and C. Chen, J. Appl. Phys. 105, 023715 (2009).

    Article  Google Scholar 

  28. W. Seith and T. Heumann, Diffusion of Metals: Exchange Reactions (Berlin: Springer, 1962), p. 65.

    Google Scholar 

  29. K. Hoshino, Y. Iijima, K. Hirano, and T. Jpn, I. Met. 21, 674 (1980).

    Google Scholar 

  30. F. Dyson, T.R. Anthony, and D. Turnbull, J. Appl. Phys. 38, 3408 (1967).

    Article  Google Scholar 

  31. P. Yang, C. Kuo, and C. Chen, JOM 60, 77 (2008).

    Article  Google Scholar 

  32. K. Lee, K. Kim, and K. Suganuma, J. Mater. Res. 26, 2624 (2011).

    Article  Google Scholar 

  33. Y. Kim, S. Nagao, T. Sugahara, K. Suganuma, M. Ueshima, and H. Albrecht, J. Mater. Sci. - Mater. Electron. 25, 3090 (2014).

    Article  Google Scholar 

  34. B. Chao, S. Chae, X. Zhang, K. Lu, M. Ding, J. Im, and P.S. Ho, J. Appl. Phys. 100, 084909 (2006).

    Article  Google Scholar 

  35. H. Ye, C. Basaran, and D. Hopkins, Appl. Phys. Lett. 82, 1045 (2003).

    Article  Google Scholar 

  36. S.H. Chiu, S.W. Liang, C. Chen, D.J. Yao, Y.C. Liu, K.H. Chen, and S.H. Lin, in 56th Electronic Components and Technology Conference, p. 4 (2006).

  37. T. Chellaih, G. Kumar, and K.N. Prabhu, Mater. Des. 28, 1006 (2007).

    Article  Google Scholar 

  38. A.T. Huang, A.M. Gusak, and K.N. Tu, Appl. Phys. Lett. 88, 141911 (2006).

    Article  Google Scholar 

  39. L. Zhang, S. Ou, J. Huang, and K.N. Tu, Appl. Phys. Lett. 88, 012106 (2006).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) Grant Funded by the Korea government (MSIT) through GCRC-SOP (Grant No. 2011-0030013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namhyun Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baek, SM., Park, Y., Oh, C. et al. Modeling and Experimental Verification of Intermetallic Compounds Grown by Electromigration and Thermomigration for Sn-0.7Cu Solders. J. Electron. Mater. 48, 142–151 (2019). https://doi.org/10.1007/s11664-018-6786-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6786-4

Keywords

Navigation