Skip to main content
Log in

Light-triggered defect dynamics in silicon wafers: understanding degradation mechanisms

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, the effect of heat treatment on the minority carrier lifetime (τ) in boron-doped crystalline silicon wafers coated with a silicon nitride (SiNx:H) layer has been investigated. The results showed an initial increase in τ during the early phase of light exposure of the samples, which was attributed to the presence of iron–boron complexes in the c-Si wafers. However, this enhancement was followed by a decrease associated with the formation of boron-oxygen complexes, known as light-induced degradation. Moreover, kinetic models were used to analyze defect interactions in the wafers, showing a correlation between τ behavior and hydrogen-boron complex concentrations, and related by analytical techniques. In addition, the samples were subjected to a dark annealing step, resulting in further degradation due to the firing temperature process and the presence of hydrogen atoms in the silicon nitride layer. Finally, this study provides valuable insights into defect formation mechanisms in c-Si wafers that could improve the stability and efficiency optimization of silicon-based solar cells under operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data underlying this study are available in the published article.

References

  1. ITRPV, International Technology Roadmap for Photovoltaic (ITRPV), (10th ed) 2019, pp. 1–38. https://pv-manufacturing.org/wp-content/uploads/2019/03/ITRPV-2019.pdf

  2. M. Green, What’s next in photovoltaics beyond PERC? In: APSRC, 2018, ‘Proceedings of the Asia Pacific Solar Research Conference 2018’, Publisher: Australian PV Institute, 2018, ISBN: 978-0-6480414-2-9. https://apvi.org.au/solar-research-conference/proceedings-apsrc-2018/

  3. D. Chen, Elucidating the mechanics behind light- and elevated temperature-induced degradation in silicon solar cells. Thesis, UNSW, Sydney, (2020) https://doi.org/10.13140/RG.2.2.10653.33762

  4. Y. Zhongshu, J. Krügener, F. Feldmann, J.-I. Polzin, B. Steinhauser, T. Le, D. Macdonald, A. Liu, Impurity gettering in polycrystalline-silicon based passivating contacts—the role of oxide stoichiometry and pinholes. Adv. Energy Mater. 12, 2103773 (2022). https://doi.org/10.1002/aenm.202103773

    Article  Google Scholar 

  5. L.I. Khirunenko, M.G. Sosnin, A.V. Duvanskii, N.V. Abrosimov, H. Riemann, New properties of boron–oxygen dimer defect in boron-doped Czochralski silicon. J. Appl. Phys. 132(13), 135703 (2022). https://doi.org/10.1063/5.0114809

    Article  ADS  Google Scholar 

  6. ITRPV, International Technology Roadmap for Photovoltaic (ITRPV), 2022 Results, 14th ed. (VDMA 2023). https://www.vdma.org/international-technology-roadmap-photovoltaic

  7. Photovoltaics Report, Fraunhofer Institute for Solar Energy Systems ISE: Fraunhofer Institute for Solar Energy Systems ISE, (2020). https://fr.scribd.com/document/641697041/Photovoltaics-Report-Fraunhofer-2020.

  8. A. Shahzad, S. Khatun, S. Sallam, A. Ansari, Z.A. Ansari, R.R. Kumar, J. Hakami, A. Khan, Photoresponse of porous silicon for potential optical sensing. Europhys. Lett. 139(3), 36001 (2022). https://doi.org/10.1209/0295-5075/ac7d08

    Article  ADS  Google Scholar 

  9. A. Shahzad, A. Ansari, M.A. Siddiqui, A. Khan, P. Ranjan, A potential optical sensor based on nanostructured silicon. J. Mater. Sci. Mater. Electron. 34(8), 755 (2023). https://doi.org/10.1007/s10854-023-10187-2µ

    Article  Google Scholar 

  10. W.K. Hamoudi, R.A. Ismail, K. Al-Qayim, D.N. Raouf, R.H. Mahdi, M.S. Murad, Effect of rapid thermal annealing on photovoltaic properties of silicon solar cell fabricated by one-step laser doping in liquid. Appl. Phys. A 130(1), 26 (2023). https://doi.org/10.1007/s00339-023-07173-0

    Article  ADS  Google Scholar 

  11. M.S. Prasanna, P. Kale, State-of-the-art passivation strategies of c-Si for photovoltaic applications: a review. Mater. Sci. Semicond. Process. 154, 107202 (2023). https://doi.org/10.1016/j.mssp.2022.107202

    Article  Google Scholar 

  12. J. Coutinho, G. Diana, V.J.B. Torres, T.O. Abdul Fattah, V.P. Markevich, A.R. Peaker, Hydrogen reactions with dopants and impurities in solar silicon from first principles. Solar RRL (2023). https://doi.org/10.1002/solr.202300639

    Article  Google Scholar 

  13. L. Song, Z. Hu, D. Lin, D. Yang, X. Yu, Progress of hydrogenation engineering in crystalline silicon solar cells: a review. J. Phys. D Appl. Phys. (2022). https://doi.org/10.1088/1361-6463/ac9066/meta

    Article  Google Scholar 

  14. A. Liu, S. Pheng-Phang, D. Macdonald, Gettering in silicon photovoltaics: a review. Solar Energy Mater. Solar Cells 234, 111447 (2022). https://doi.org/10.1016/j.solmat.2021.111447

    Article  Google Scholar 

  15. J. Schmidt, K. Bothe, Performance-limiting oxygen-related defects in silicon solar cells. ECS Trans. 3(4), 285 (2006). https://doi.org/10.1149/1.2355764

    Article  Google Scholar 

  16. C. Sen, C. Chan, P. Hamer, M. Wright, C. Chong, B. Hallam, M. Abbott, «Eliminating light- and elevated temperature-induced degradation in P-type PERC solar cells by a two-step thermal process. Sol. Energy Mater. Sol. Cells 209, 110470 (2020). https://doi.org/10.1016/j.solmat.2020.110470

    Article  Google Scholar 

  17. K. Kim, R. Chen, D. Chen, P. Hamer, A. Ciesla-Nee-Wenham, S. Wenham, Z. Hameiri, Degradation of surface passivation and bulk in p-type monocrystalline silicon wafers at elevated temperature. IEEE J. Photovolt. 9, 97–105 (2019). https://doi.org/10.1109/JPHOTOV.2018.2878791

    Article  Google Scholar 

  18. X. Tan, Insights into the mechanisms of bulk and surface related degradation in monocrystalline silicon solar cells. Thesis, UNSW Sydney, (2020). https://doi.org/10.26190/unsworks/22239.

  19. T. O. Abdul Fattah, J. Jacobs, V. P. Markevich, N. V. Abrosimov, M. P. Halsall, I. F. Crowe, A. R. Peaker, Analysis of impurity-related radiative transitions in silicon materials using temperature-dependent photoluminescence. In: 2023 IEEE 50th Photovoltaic Specialists Conference (PVSC), 1–6 (2023). https://doi.org/10.1109/PVSC48320.2023.10359855

  20. C. Sen, P. Hamer, A. Soeriyadi, B. Wright, M. Wright, A. Samadi, D. Chen, B.V. Stefani, D. Zhang, J. Wu, F. Jiang, B. Hallam, M. Abbott, Impact of surface doping profile and passivation layers on surface-related degradation in silicon PERC solar cells. Sol. Energy Mater. Sol. Cells 235, 111497 (2022). https://doi.org/10.1016/j.solmat.2021.111497

    Article  Google Scholar 

  21. S. Yuan, S. Ding, B. Ai, D. Chen, J. Jin, J. Ye, D. Qiu, X. Sun, X. Liang, In situ LID and regeneration of PERC solar cells from different positions of a B-doped Cz-Si ingot. Int. J. Photoenergy 2022, 6643133 (2022). https://doi.org/10.1155/2022/6643133

    Article  Google Scholar 

  22. D. Lin, Z. Hu, Q. He, D. Yang, L. Song, X. Yu, New insights on LeTID/BO-LID in p-type mono-crystalline silicon. Sol. Energy Mater. Sol. Cells 226, 111085 (2021). https://doi.org/10.1016/j.solmat.2021.111085

    Article  Google Scholar 

  23. S. Ding, C. Yang, C. Qin, B. Ai, X. Sun, J. Yang, Q. Liu, X. Liang, Comparison of LID and electrical injection regeneration of PERC and Al-BSF solar cells from a Cz-Si ingot. Energies 15, 7764 (2022). https://doi.org/10.3390/en15207764

    Article  Google Scholar 

  24. B. Hammann, N. Assmann, P. Weiser, W. Kwapil, T. Niewelt, F. Schindler, R. Søndenå, E.V. Monakhov, M. Schubert, The impact of different hydrogen configurations on light- and elevated-temperature-induced degradation. IEEE J. Photovolt. (2023). https://doi.org/10.1109/JPHOTOV.2023.3236185

    Article  Google Scholar 

  25. M. H. Utila, C-H Lin, LeTID study of passivation layers for Si solar cells. In: Advanced Photonics Congress 2023 (2023), Paper SW3D.4, SW3D.4. Optica Publishing Group, (2023). https://doi.org/10.1364/SELED.2023.SW3D.4

  26. M. Kim, M. Abbott, N. Nampalli, S. Wenham, B. Stefani, B. Hallam, Modulating the extent of fast and slow boron-oxygen related degradation in Czochralski silicon by thermal annealing: evidence of a single defect. J. Appl. Phys. 121(5), 053106 (2017). https://doi.org/10.1063/1.4975685

    Article  ADS  Google Scholar 

  27. T. Niewelt, J. Schön, W. Warta, S.W. Glunz, M.C. Schubert, Degradation of crystalline silicon due to boron–oxygen defects. IEEE J. Photovolt. 7(1), 383–398 (2016). https://doi.org/10.1109/JPHOTOV.2016.2614119

    Article  Google Scholar 

  28. J. Lindroos, H. Savin, Review of light-induced degradation in crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 147, 115–126 (2016). https://doi.org/10.1016/j.solmat.2015.11.047

    Article  Google Scholar 

  29. B.J. Hallam, P.G. Hamer, S. Wang, L. Song, N. Nampalli, M.D. Abbott, C.E. Chan, D. Lu, A.M. Wenham, L. Mai, N. Borojevic, A. Li, D. Chen, M.Y. Kim, A. Azmi, S. Wenham, Advanced hydrogenation of dislocation clusters and boron–oxygen defects in silicon solar cells. Energy Procedia. 77, 799–809 (2015). https://doi.org/10.1016/j.egypro.2015.07.113

    Article  Google Scholar 

  30. J. Lindroos, Copper-related light-induced degradation in crystalline silicon. Thesis, Aalto University, Finland, (2015). https://urn.fi/URN:ISBN:978-952-60-6130-6

  31. A. Salam, R. Ismail, M.A. Mohammed, HgI2@CsI core/shell nanoparticles: synthesis, characterization, and application in photosensors. J. Indian Chem. Soc. 99(7), 100515 (2022). https://doi.org/10.1016/j.jics.2022.100515

    Article  Google Scholar 

  32. A. Mohammed-Krarroubi, Effect of gettering on the degradation/regeneration mechanisms induced by charge carrier injection on the performance of p-type silicon-based solar cells. Confirmation report, Semiconductor Technology Research Center for Energy (CRTSE), ALGIERS, (2021)

  33. R.A. Sinton, A. Cuevas, Contactless determination of current–voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data. Appl. Phys. Lett. 69(17), 2510–2512 (1996). https://doi.org/10.1063/1.117723

    Article  ADS  Google Scholar 

  34. K. Bothe, J. Schmidt, Electronically activated boron–oxygen-related recombination centers in crystalline silicon. J. Appl. Phys. 99, 013701 (2006). https://doi.org/10.1063/1.2140584

    Article  ADS  Google Scholar 

  35. A.A. Istratov, H. Hieslmair, E.R. Weber, Iron and its complexes in silicon. Appl. Phys. A Mater. Sci. Process. 69, 13–44 (1999). https://doi.org/10.1007/s003390050968

    Article  ADS  Google Scholar 

  36. J.H. Reiss, R.R. King, K.W. Mitchell, Characterization of diffusion length degradation in Czochralski silicon solar cells. Appl. Phys. Lett. 68, 3302–3304 (1996). https://doi.org/10.1063/1.116581

    Article  ADS  Google Scholar 

  37. X. Zhu, D. Yang, X. Yu, J. He, Y. Wu, J. Vanhellemont, D. Que, Iron-boron pair dissociation in silicon under strong illumination. AIP Adv. 3, 082124 (2013). https://doi.org/10.1063/1.4819481

    Article  ADS  Google Scholar 

  38. C. Möller, T. Bartel, F. Gibaja, K. Lauer, Iron–boron pairing kinetics in illuminated p-type and in boron/phosphorus co-doped n-type silicon. J. Appl. Phys. 116, 024503 (2014). https://doi.org/10.1063/1.4889817

    Article  ADS  Google Scholar 

  39. M. Kim, Understanding the mechanisms of light-induced degradation in crystalline silicon. Thesis, UNSW, Sydney, (2020). https://doi.org/10.26190/unsworks/22278

  40. D. Macdonald, T. Roth, P.N.K. Deenapanray, T. Trupke, R.A. Bardos, Doping dependence of the carrier lifetime crossover point upon dissociation of iron–boron pairs in crystalline silicon. Appl. Phys. Lett. 89, 142107 (2006). https://doi.org/10.1063/1.2358126

    Article  ADS  Google Scholar 

  41. O. Olikh, V. Kostylyov, V. Vlasiuk, R. Korkishko, R. Chupryna, intensification of iron–boron complex association in silicon solar cells under acoustic wave action. J. Mater. Sci. Mater. Electron. 33(16), 13133–13142 (2022). https://doi.org/10.1007/s10854-022-08252-3

    Article  Google Scholar 

  42. K. Kim, S.K. Dhungel, J. Yoo, S. Jung, D. Mangalaraj, J. Yi, Hydrogenated silicon-nitride thin films as antireflection and passivation coatings for multicrystalline silicon solar cells. J. Korean Phys. Soc. 51(5), 1659–1662 (2007). https://doi.org/10.3938/jkps.51.1659

    Article  ADS  Google Scholar 

  43. W.D. Brown, M.A. Khaliq, The effects of rapid thermal annealing on the properties of plasma-enhanced chemically vapor-deposited silicon nitride. Thin Solid Films 186(1), 73–85 (1990). https://doi.org/10.1016/0040-6090(90)90501-4

    Article  ADS  Google Scholar 

  44. Y. Liu, N. Jehanathan, J. Dell, Thermally induced damages of PECVD SiNx thin films. J. Mater. Res. 26(19), 2552–2557 (2011). https://doi.org/10.1557/jmr.2011.236

    Article  ADS  Google Scholar 

  45. B. Karunagaran, S.J. Chung, S. Velumani, E.-K. Suh, Effect of rapid thermal annealing on the properties of PECVD SiNx thin films. Mater. Chem. Phys. 106(1), 130–133 (2007). https://doi.org/10.1016/j.matchemphys.2007.05.028

    Article  Google Scholar 

  46. S. Rein, S.W. Glunz, Electronic properties of interstitial iron and iron–boron pairs determined by means of advanced lifetime spectroscopy. J. Appl. Phys. 98, 113711 (2005). https://doi.org/10.1063/1.2106017

    Article  ADS  Google Scholar 

  47. K. Lauer, C. Möller, D. Debbih, M. Auge, D. Schulze, Determination of activation energy of the iron acceptor pair association and dissociation reaction. Solid State Phenom. 242, 230–235 (2015). https://doi.org/10.4028/www.scientific.net/SSP.242.230

    Article  Google Scholar 

  48. D. Macdonald, T. Roth, P.N.K. Deenapanray, K. Bothe, P. Pohl, J. Schmidt, Formation rates of iron-acceptor pairs in crystalline silicon. J. Appl. Phys. 98, 083509 (2005). https://doi.org/10.1063/1.2102071

    Article  ADS  Google Scholar 

  49. E. Bustarret, M. Bensouda, M.C. Habrard, J.C. Bruyère, S. Poulin, S.C. Gujrathi, Configurational statistics in a-SixNyHz alloys: a quantitative bonding analysis. Phys. Rev. B Condens. Matter 38(12), 8171–8184 (1998). https://doi.org/10.1103/physrevb.38.8171

    Article  ADS  Google Scholar 

  50. G. Scardera, T. Puzzer, G. Conibeer, M.A. Green, Fourier transform infrared spectroscopy of annealed silicon-rich silicon nitride thin films. J. App. Phy. 104(10), 104310 (2008). https://doi.org/10.1063/1.3021158

    Article  ADS  Google Scholar 

  51. S. Preet-Singh, G. Vijaya-Prakash, S. Ghosh, S. Rai, P. Srivastava, Impact of thermal annealing on interfacial layer and electrical properties of a-SiNx: H/Si. Euro Phys. Lett. (2010). https://doi.org/10.1209/0295-5075/90/26002

    Article  Google Scholar 

  52. H.T. Nguyen, F.E. Rougieux, D. Yan, Y. Wan, S. Mokkapati, S.M. De Nicolas, J.P. Seif, S. De Wolf, D. Macdonald, Characterizing amorphous silicon, silicon nitride, and diffused layers in crystalline silicon solar cells using micro-photoluminescence spectroscopy. Sol. Energy Mater. Sol. Cells 145, 403–411 (2016). https://doi.org/10.1016/j.solmat.2015.11.006

    Article  Google Scholar 

  53. R. Basnet, M. Siriwardhana, H. Nguyen, D. Macdonald, Impact of gettering and hydrogenation on sub-band-gap luminescence from ring defects in Czochralski-grown silicon. ACS Appl. Energy Mater. (2021). https://doi.org/10.1021/acsaem.1c02100

    Article  Google Scholar 

  54. M.W. Lamers, K. Butler, I.G. Romijn, J. Harding, A.W. Weeber, Examination of the properties of the interface of a-SiNx:H/Si in crystalline silicon solar cells and its effect on cell efficiency. MRS Online Proc. Lib. 1423, 7–12 (2012). https://doi.org/10.1557/opl.2012.56

    Article  Google Scholar 

  55. F. Kersten, J. Heitmann, J.W. Müller, Influence of Al2O3 and SiNx passivation layers on LeTID. Energy Procedia 92, 828–832 (2016). https://doi.org/10.1016/j.egypro.2016.07.079

    Article  Google Scholar 

  56. D. Lin, Z. Hu, L. Song, D. Yang, X. Yu, Investigation on the light and elevated temperature induced degradation of gallium-doped Cz-Si. Sol. Energy 225, 407–411 (2021). https://doi.org/10.1016/j.solener.2021.07.023

    Article  ADS  Google Scholar 

  57. W. Kwapil, J. Dalke, R. Post, T. Niewelt, Influence of dopant elements on degradation phenomena in B- and Ga-doped Czochralski-Grown silicon. Solar RRL 5(5), 2100147 (2021). https://doi.org/10.1002/solr.202100147

    Article  Google Scholar 

  58. A. C. N. Wenham, S. Wenham, R. Chen, C. Chan, D. Chen, B. Hallam, D. Payne, T. Fung, M. Kim, S. Liu, S. Wang, K. Kim, A. Samadi, C. Sen, C. Vargas, U. Varshney, B. V. Stefani, P. Hamer, G. Bourret-Sicotte, N. Nampalli, Z. Hameiri, C. Chong, M. Abbott, Hydrogen-induced degradation. In: 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018—a joint conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC 2018, pp. 1–8. https://doi.org/10.1109/PVSC.2018.8548100

  59. B. Hammann, L. Rachdi, W. Kwapil, F. Schindler, M.C. Schubert, Insights into the hydrogen-related mechanism behind defect formation during light- and elevated temperature-induced degradation. Phys. Status Solidi Rapid Res. Lett. 15, 2000584 (2021). https://doi.org/10.1002/pssr.202000584

    Article  ADS  Google Scholar 

  60. D.C. Walter, V.V. Voronkov, R. Falster, D. Bredemeier, J. Schmidt, On the kinetics of the exchange of hydrogen between hydrogen–boron pairs and hydrogen dimers in crystalline silicon. J. Appl. Phys. 131, 165702 (2022). https://doi.org/10.1063/5.0086307

    Article  ADS  Google Scholar 

  61. J. Simon, A. Herguth, G. Hahn, Quantitative analysis of boron–hydrogen pair dynamics by infrared absorption measurements at room temperature. J. Appl. Phys. 131, 235703 (2022). https://doi.org/10.1063/5.0090965

    Article  ADS  Google Scholar 

  62. V.V. Voronkov, Independent subsystems of atomic hydrogen in silicon responsible for boron passivation and for dimer production. Phys. Status Solidi A 219, 2200081 (2022). https://doi.org/10.1002/pssa.202200081

    Article  ADS  Google Scholar 

  63. D. Chen, P.G. Hamer, M. Kim, T.H. Fung, G. Bourret-Sicotte, S. Liu, C.E. Chan, A. Ciesla, R. Chen, M.D. Abbott, B.J. Hallam, S.R. Wenham, Hydrogen induced degradation: a possible mechanism for light- and elevated temperature- induced degradation in n-type silicon. Sol. Energy Mater. Sol. Cell. 185, 174–182 (2018). https://doi.org/10.1016/j.solmat.2018.05.034

    Article  Google Scholar 

  64. D. Chen, M. Vaqueiro Contreras, A. Ciesla, P. Hamer, B. Hallam, M. Abbott, C. Chan, Progress in the understanding of light- and elevated temperature-induced degradation in silicon solar cells: a review. Prog. Photovolt. Res. Appl. 29, 1180–1201 (2020). https://doi.org/10.1002/pip.3362

    Article  Google Scholar 

  65. T. Niewelt, F. Schindler, W. Kwapil, R. Eberle, J. Schon, M.C. Schubert, Understanding the light-induced degradation at elevated temperatures: similarities between multicrystalline and float-zone p-type silicon. Prog. Photovolt. Res. Appl. 26, 533–542 (2018). https://doi.org/10.1002/pip.2954

    Article  Google Scholar 

  66. M. Winter, D. Walter, J. Schmidt, Carrier lifetime degradation and regeneration in gallium- and boron-doped monocrystalline silicon materials. IEEE J. Photovolt. 11, 866–872 (2021). https://doi.org/10.1109/jphotov.2021.3070474

    Article  Google Scholar 

  67. D. Bredemeier, D.C. Walter, R. Heller, J. Schmidt, Impact of hydrogen-rich silicon nitride material properties on light-induced lifetime degradation in multicrystalline silicon. Phys. Status Solidi Rapid Res. Lett. 13, 1900201 (2019). https://doi.org/10.1002/pssr.201900201

    Article  ADS  Google Scholar 

  68. C. Herring, N.M. Johnson, C.G. Van de Walle, Energy levels of isolated interstitial hydrogen in silicon. Phys. Rev. B 64(12), 125209 (2001). https://doi.org/10.1103/PhysRevB.64.125209

    Article  ADS  Google Scholar 

  69. Y. Acker, J. Simon, A. Herguth, Formation dynamics of BH and GaH-Pairs in crystalline silicon during dark annealing. Physica Status Solidi (a) 219(17), 2200142 (2022). https://doi.org/10.1002/pssa.202200142

    Article  ADS  Google Scholar 

  70. C. Sun, D. Yan, D. Macdonald, Modeling the charge state of monatomic hydrogen and other defects with arbitrary concentrations in crystalline silicon. Phys. Status Solidi (RRL)—Rapid Res. Lett. 15, 2100483 (2021). https://doi.org/10.1002/pssr.202100483

    Article  ADS  Google Scholar 

  71. C. Winter, J. Simon, A. Herguth, Study on boron–hydrogen pairs in bare and passivated float-zone silicon wafers. Physica Status Solidi (a) 218(23), 2100220 (2021). https://doi.org/10.1002/pssa.202100220

    Article  ADS  Google Scholar 

  72. C.G. Van de Walle, J. Neugebauer, Hydrogen in semiconductors. Ann. Rev. Mater. Res. 36(1), 179–198 (2006). https://doi.org/10.1146/annurev.matsci.36.010705.155428

    Article  ADS  Google Scholar 

  73. J. Simon, A. Herguth, L. Kutschera, G. Hahn, The dissociation of gallium–hydrogen pairs in crystalline silicon during illuminated annealing. Phys. Status Solidi Rapid Res. Lett. 16, 2200297 (2022). https://doi.org/10.1002/pssr.202200297

    Article  ADS  Google Scholar 

  74. D.C. Walter, D. Bredemeier, R. Falster, V.V. Voronkov, J. Schmidt, Easy-to-apply methodology to measure the hydrogen concentration in boron-doped crystalline silicon. Sol. Energy Mater. Sol. Cell. 200, 109970 (2019). https://doi.org/10.1016/j.solmat.2019.109970

    Article  Google Scholar 

  75. J. Coutinho, D. Gomes, V.J.B. Torres, T.O. Abdul Fattah, V.P. Markevich, A.R. Peaker, Theory of reactions between hydrogen and group-III acceptors in silicon. Phys. Rev. B 108(1), 014111 (2023). https://doi.org/10.1103/PhysRevB.108.014111

    Article  ADS  Google Scholar 

  76. D. Gomes, V.P. Markevich, A.R. Peaker, J. Coutinho, Dynamics of hydrogen in silicon at finite temperatures from first principles. Physica Status Solidi (b) 259(6), 2100670 (2022). https://doi.org/10.1002/pssb.202100670

    Article  ADS  Google Scholar 

  77. V.V. Voronkov, R. Falster, Generation and loss of hydrogen-boron pairs in fired silicon wafers. Mater. Sci. Semicond. Process. 167, 107796 (2023). https://doi.org/10.1016/j.mssp.2023.107796

    Article  Google Scholar 

  78. J.E. Birkholz, K. Bothe, D. Macdonald, J. Schmidt, Electronic properties of iron-boron pairs in crystalline silicon by temperature -and injection-level-dependent lifetime measurements. J. Appl. Phys. 97, 103708 (2005). https://doi.org/10.1063/1.1897489

    Article  ADS  Google Scholar 

  79. M. Kim, D. Chen, M. Abbott, N. Nampalli, S. Wenham, B. Stefani, B. Hallam, Impact of interstitial iron on the study of meta-stable BO defects in Czochralski silicon: Further evidence of a single defect. J. Appl. Phys. 123, 16 (2018)

    Article  Google Scholar 

  80. Y. Kouhlane, D. Bouhafs, N. Khelifati, A. Guenda, N.E. Demagh, A. Demagh, P. Pfeiffer, S. Mezghiche, W. Hetatache, F. Derkaoui, C. Nasraoui, O.V. Nwadiaru, Thermal stress during RTP processes and its possible effect on the light induced degradation in Cz-Si wafers. Heat Mass Transf. 54, 3081–3087 (2018). https://doi.org/10.1007/s00231-018-2355-x

    Article  ADS  Google Scholar 

  81. B.J. Hallam, C.E. Chan, R. Chen, S. Wang, J. Ji, L. Mai, D.M. Abbott, D.N. Payne, M. Kim, D. Chen, C. Chong, S.R. Wenham, Rapid mitigation of carrier-induced degradation in commercial silicon solar cells. Jpn. J. Appl. Phys. (2017). https://doi.org/10.7567/JJAP.56.08MB13

    Article  Google Scholar 

  82. Y. Kouhlane, D. Bouhafs, A. Guenda, N. Demagh, A. Guessoum, A. Chibani, RTP process effect on multicrystalline mc-Si wafers and its impact on solar cell efficiency. In: Conference: 47th IEEE Photovoltaic Specialists Conference (PVSC)At: virtual meeting, Volume: 47, Calgary, AB, Canada, https://doi.org/10.1109/PVSC45281.2020.9301013

  83. L. Helmich, D.C. Walter, D. Bredemeier, J. Schmidt, Atomic-layer deposited Al2O3 as effective barrier against the diffusion of hydrogen from SiNx:H layers into crystalline silicon during rapid thermal annealing. Phys. Status Solidi Rapid Res. Lett. 14(12), 2000367 (2020). https://doi.org/10.1002/pssr.202000367

    Article  ADS  Google Scholar 

  84. D. Bredemeier, D.C. Walter, J. Schmidt, Lifetime degradation in multicrystalline silicon under illumination at elevated temperatures: indications for the involvement of hydrogen. Proc. Amer. Inst. Phys. Conf. (2018). https://doi.org/10.1063/1.5049320

    Article  Google Scholar 

  85. N. Nampalli, B. Hallam, C. Chan, M. Abbott, S. Wenham, Evidence for the role of hydrogen in the stabilization of minority carrier lifetime in boron-doped Czochralski silicon. Appl. Phys. Lett. 106, 173501 (2015). https://doi.org/10.1063/1.4919385

    Article  ADS  Google Scholar 

  86. S. Wilking, C. Beckh, S. Ebert, A. Herguth, G. Hahn, Influence of bound hydrogen states on BO-regeneration kinetics and consequences for high-speed regeneration processes. Sol. Energy Mater. Sol. Cells 131, 2–8 (2014). https://doi.org/10.1016/j.solmat.2014.06.027

    Article  Google Scholar 

  87. J.Y. Lee, Rapid thermal processing in solar cells- passivation, and diffusion. Thesis, Freiburg (2003). https://www.freidok.uni-freiburg.de/dnb/download/1118

  88. A. Castaldini, D. Cavalcoli, A. Cavallini, D. Jones, V. Palermo, E. Susi, Surface modifications in Si after rapid thermal annealing. J. Electrochem. Soc. 149(12), G633 (2002). https://doi.org/10.1149/1.1516225

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the characterization staff service of the Research Center in Semiconductor Technology for Energy (CRTSE) Algiers and the Department of Physics, Faculty of Science, University of Badji Mokhtar Annaba, Algeria, for their invaluable support. This work received funding from the General Direction of Scientific Research and Technological Development of Algeria (DGRSDT/MESRS).

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: Y. Chibane, Y. Kouhlane. Data collection: Y. Chibane, D. Bouhafs. Analysis of results: Z. W. Achour, A. Mohammed-Krarroubi, A. Khelfane. Interpretation of results: Y. Chibane, Y. Kouhlane. Draft manuscript preparation: Y. Chibane, Y. Kouhlane, D. Bouhafs. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Yougherta Chibane.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chibane, Y., Kouhlane, Y., Bouhafs, D. et al. Light-triggered defect dynamics in silicon wafers: understanding degradation mechanisms. Appl. Phys. A 130, 367 (2024). https://doi.org/10.1007/s00339-024-07511-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07511-w

Keywords

Navigation