Skip to main content
Log in

Synthesis of SnO2 Nanoparticles by Electrooxidation Method and Their Application in Dye-Sensitized Solar Cells: The Influence of the Counterion

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A fast and facile electrochemical method called electrooxidation was used to prepare SnO2 nanoparticles. In this route, a sacrificial tin anode is dissolved in an electrolyte by applying a voltage to an electrochemical cell. We used different electrolyte environments, namely tetramethylammonium chloride and different counterions of tetrabutylammonium cation, viz. Br, Cl, and ClO 4 . Characterization results showed that the size distribution was more uniform for the nanoparticles created with Br and Cl counterions. Furthermore, the particles in these samples were smaller than in the others. The amount of OH groups on the surface of the Br and Cl samples was higher than for the other samples, enhancing dye adsorption. Dye-sensitized solar cells (DSSCs) were fabricated from the produced SnO2 nanoparticles, and the influence of the different counterions on their performance was investigated. By varying the counterion in the electrolyte, samples with different hydrophilic nature and dye-loading ability were obtained. The dye adsorption and consequently the current density of the cell made from the Br solution were higher than for the other samples, and the power conversion efficiency in this case reached 1.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Asemi, S. Maleki, and M. Ghanaatshoar, J. Sol-Gel Sci. Technol. 81, 645–651 (2017).

    Article  Google Scholar 

  2. M. Ameri, M. Raoufi, M.R. Zamani-Meymian, F. Samavat, M.R. Fathollahi, and E. Mohajerani, J. Electron. Mater. 47, 1993–1999 (2018).

    Article  Google Scholar 

  3. T.T. Pham, N. Mathews, Y.M. Lam, and S. Mhaisalkar, J. Electron. Mater. 46, 3801–3807 (2017).

    Article  Google Scholar 

  4. L. Zhang, K. Jin, S. Li, L. Wang, Y. Zhang, and X. Li, J. Electron. Mater. 44, 244–251 (2015).

    Article  Google Scholar 

  5. S. Mohammadnejad, A. Khalafi, and S.M. Ahmadi, Sol. Energy 133, 501–511 (2016).

    Article  Google Scholar 

  6. X. Xiao, L. Liu, J. Ma, Y. Ren, X. Cheng, Y. Zhu, D. Zhao, A.A. Elzatahry, A. Alghamdi, and Y. Deng, ACS Appl. Mater. Interfaces 10, 1871–1880 (2018).

    Article  Google Scholar 

  7. A. Birkel, Y.G. Lee, D. Koll, X. Van Meerbeek, S. Frank, M.J. Choi, Y.S. Kang, K. Char, and W. Tremel, Energy Environ. Sci. 5, 5392–5400 (2012).

    Article  Google Scholar 

  8. M. Dadkhah and M. Salavati-Niasari, Mater. Sci. Semicond. Process. 20, 41–48 (2014).

    Article  Google Scholar 

  9. M.M. Rashad, I.A. Ibrahim, I. Osama, and A.E. Shalan, Bull. Mater. Sci. 37, 903–909 (2014).

    Article  Google Scholar 

  10. M.S. Pereira, F.A.S. Lima, C.B. Silva, P.T.C. Freire, and I.F. Vasconcelos, J. Sol-Gel Sci. Technol. 84, 206–213 (2017).

    Article  Google Scholar 

  11. M.A. Hossain, G. Yang, M. Parameswaran, J.R. Jennings, and Q. Wang, J. Phys. Chem. C 114, 21878–21884 (2010).

    Article  Google Scholar 

  12. M. Abrari, M. Ghanaatshoar, S.S.H. Davarani, H.R. Moazami, and I. Kazeminezhad, Appl. Phys. A 123, 326 (2017).

    Article  Google Scholar 

  13. M. Asemi, A. Suddar, and M. Ghanaatshoar, J. Mater. Sci. Mater. Electron. 28, 15233–15238 (2017).

    Article  Google Scholar 

  14. H.R. Moazami, S.S.H. Davarani, T. Yousefi, and A.R. Keshtkar, Mater. Sci. Semicond. Process. 30, 682–687 (2015).

    Article  Google Scholar 

  15. B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics, 2nd ed. (New York: Wiley, 1991).

    Book  Google Scholar 

  16. H. Cheng, J. Ma, and Z. Zhao, Chem. Mater. 6, 1033–1040 (1994).

    Article  Google Scholar 

  17. M. Asemi and M. Ghanaatshoar, J. Am. Ceram. Soc. 100, 5584–5592 (2017).

    Article  Google Scholar 

  18. C. Suryanarayana and M.G. Norton, X-ray Diffraction: A Practical Approach, Vol. 207 (London: Plenum, 1998).

    Book  Google Scholar 

  19. V.D. Mote, Y. Purushotham, and B.N. Dole, J. Theor. Appl. Phys. 6, 6 (2012).

    Article  Google Scholar 

  20. S. Chakraborty and P. Kumbhakar, Indian J. Phys. 88, 251–257 (2014).

    Article  Google Scholar 

  21. Y.C. Goswami, V. Kumar, P. Rajaram, V. Ganesan, M.A. Malik, and P. O’Brien, J. Sol-Gel Sci. Technol. 69, 617–624 (2014).

    Article  Google Scholar 

  22. U. Aschauer, R. Pfenninger, S.M. Selbach, T. Grande, and N.A. Spaldin, Phys. Rev. B 88, 054111 (2013).

    Article  Google Scholar 

  23. P. Chetri and A. Choudhury, Physica E 47, 257–263 (2013).

    Article  Google Scholar 

  24. H. Zhang, Y. Liu, K. Zhu, G. Siu, Y. Xiong, and C. Xiong, J. Phys.: Condens. Matter 10, 11121 (1998).

    Google Scholar 

  25. H. Seema, K.C. Kemp, V. Chandra, and K.S. Kim, Nanotechnology 23, 355705 (2012).

    Article  Google Scholar 

  26. H.R. Moazami, S.S.H. Davarani, T. Yousefi, and H. Darjazi, Mater. Sci. Semicond. Process. 38, 240–248 (2015).

    Article  Google Scholar 

  27. S. Zhan, D. Li, S. Liang, X. Chen, and X. Li, Sensors 13, 4378–4389 (2013).

    Article  Google Scholar 

  28. K. Arora, M. Tomar, and V. Gupta, Analyst 139, 837–849 (2014).

    Article  Google Scholar 

  29. M. Asemi and M. Ghanaatshoar, Ceram. Int. 42, 6664–6672 (2016).

    Article  Google Scholar 

  30. M. Asemi, M. Ahmadi, and M. Ghanaatshoar, Ceram. Int. 44, 12862–12868 (2018).

    Article  Google Scholar 

  31. A. Kathalingam, M.R. Kim, Y.S. Chae, J.K. Rhee, and T. Mahalingam, J. Korean Phys. Soc. 55, 2476–2481 (2009).

    Article  Google Scholar 

  32. K. Anandan and V. Rajendran, J. Non-Oxide Glasses 2, 83–89 (2010).

    Google Scholar 

  33. D.F. Cox, T.B. Fryberger, and S. Semancik, Phys. Rev. B 38, 2072 (1988).

    Article  Google Scholar 

  34. Q. Wali, Z.H. Bakr, N.A. Manshor, A. Fakharuddin, and R. Jose, Sol. Energy 132, 395–404 (2016).

    Article  Google Scholar 

  35. M. Asemi and M. Ghanaatshoar, Appl. Phys. A 122, 853 (2016).

    Article  Google Scholar 

  36. M. Asemi and M. Ghanaatshoar, J. Mater. Sci. Mater. Electron. 52, 489–503 (2017).

    Google Scholar 

  37. A. Zaban, M. Greenshtein, and J. Bisquert, ChemPhysChem 4, 859–864 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Ghanaatshoar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrari, M., Ghanaatshoar, M., Moazami, H.R. et al. Synthesis of SnO2 Nanoparticles by Electrooxidation Method and Their Application in Dye-Sensitized Solar Cells: The Influence of the Counterion. J. Electron. Mater. 48, 445–453 (2019). https://doi.org/10.1007/s11664-018-6724-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6724-5

Keywords

Navigation