Skip to main content
Log in

Preparation of TiO2 nanotubes/reduced graphene oxide binary nanocomposites enhanced photocatalytic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, TiO2 nanotubes/reduced graphene oxide (TiO2/rGO) binary nanocomposites were synthesized by electrospinning and hydrothermal reaction in mixed solution of ethanol and deionized water. The microstructures and morphologies of TiO2 nanotubes, graphite oxide (GO) and TiO2/rGO nanocomposites were investigated via Transmission electron microscopy, Scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and UV–Visual spectrophotometer (UV–Vis), the specific surface areas and pores distribution of samples were measured through N2 adsorption–desorption. The results showed that the TiO2 nanotubes were well combined with rGO sheets and there were Ti–C bonds and Ti–O–C bonds in nanocomposites. The absorption edge of TiO2/rGO nanocomposites shifted to higher wavelengths and improved utilization rate in visible region compared to pure TiO2 nanotubes. The photocatalytic activities of all samples were investigated through photodegradation of Rhodamine B (RhB) dye under Xenon lamp irradiation and the test results showed that the photocatalytic activities of TiO2/rGO nanocomposites were obviously enhanced. When the mass of rGO ratio was increased to 10%, TiO2/rGO nanocomposites showed the highest photocatalytic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Vasilaki, I. Georgaki, D. Vernardou, M. Vamvakaki, N. Katsarakis, Appl. Surf. Sci. 353, 865 (2015)

    Article  Google Scholar 

  2. B. Pant, P.S. Saud, M. Park, S.J. Park, H.Y. Kim, J. Alloy Compd. 671, 51 (2016)

    Article  Google Scholar 

  3. S.Q. Song, B. Cheng, N.S. Wu, A.Y. Meng, S.W. Cao, J.G. Yu, Appl. Catal. B 181, 71 (2016)

    Article  Google Scholar 

  4. C. Liu, L.Q. Zhang, R. Liu, Z.F. Gao, X.P. Yang, Z.Q. Tu, F. Yang, Z.Z. Ye, L.S. Cui, C.M. Xu, Y.F. Li, J. Alloy. Compd. 656, 24 (2016)

    Article  Google Scholar 

  5. J.X. Wei, H.M. Shi, M. Zhou, D.F. Song, Y. Zhang, X.J. Pan, J.Y. Zhou, T. Wang, Appl. Catal. A 499, 101 (2015)

    Article  Google Scholar 

  6. F.H. Zhao, B.H. Dong, R.J. Gao, G. Su, W. Liu, L. Shi, C.H. Xia, L.X. Cao, Appl. Surf. Sci. 351, 303 (2015)

    Article  Google Scholar 

  7. J. Luo, D.L. Li, Y. Yang, H.Q. Liu, J.Y. Chen, H.Y. Wang, J. Alloy Compd. 661, 380 (2016)

    Article  Google Scholar 

  8. M. Faraji, N. Mohaghegh, Surf. Coat. Tech. 288, 144 (2016)

    Article  Google Scholar 

  9. M. Nasrollahzadeh, M. Atarod, B. Jaleh, M. Gandomirouzbahani, Ceram. Int. 42, 8587 (2016)

    Article  Google Scholar 

  10. L.L. Tan, W.J. Ong, S.P. Chai, B.T. Goh, A.R. Mohamed, Appl. Catal. B 179, 160 (2015)

    Article  Google Scholar 

  11. K.R. Reddy, M. Hassan, V.G. Gomes, Appl. Catal. A 489, 1 (2015)

    Article  Google Scholar 

  12. W.J. Zhao, Z.C. Zhang, J. Zhang, H.G. Wu, L.M. Xi, C.H. Ruan, Mater. Lett. 171, 182 (2016)

    Article  Google Scholar 

  13. N. Raghavan, S. Thangavel, G. Venugopal, Mat. Sci. Semicon Proc. 30, 321 (2015)

    Article  Google Scholar 

  14. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y.Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558 (2007)

    Article  Google Scholar 

  15. Y.C. Cao, Z.T. Fu, W.J. Wei, L.L. Zou, T. Mi, D. He, C.L. Yan, X.Y. Liu, Y. Zhu, L.Q. Chen, Y.J. Sun, Appl. Surf. Sci 355, 1289 (2015)

    Article  Google Scholar 

  16. M.M. Ali, K.Y. Sandhya, Sol. Energ. Mat. Sol. C. 144, 748 (2016)

    Article  Google Scholar 

  17. Y. Qian, C.Y. Wang, Z.G. Le, Appl. Surf. Sci. 257, 10758 (2011)

    Article  Google Scholar 

  18. H.F. Xu, G. Li, N. Liu, K.R. Zhu, G. Zhu, S.W. Jin, Mater. Lett. 142, 324 (2015)

    Article  Google Scholar 

  19. Y.H. Yang, E.Z. Liu, H.Z. Dai, L.M. Kang, H.T. Wu, J. Fan, X.Y. Hu, H.C. Liu, Int. J. Hydrog. Energy 39, 7664 (2014)

    Article  Google Scholar 

  20. W.D. Yang, Y.R. Li, Y.C. Lee, Appl. Surf. Sci. 380, 249 (2016)

    Article  Google Scholar 

  21. K. Hareesh, R.P. Joshi, S.S. Dahiwale, V.N. Bhoraskar, S.D. Dhole, Vacuum 124, 40 (2016)

    Article  Google Scholar 

  22. Y. Yang, L.J. Luo, M. Xiao, H. Li, X.J. Pan, F.Z. Jiang, Mat. Sci. Semicon. Proc. 40, 183 (2015)

    Article  Google Scholar 

  23. Z. Jafari, N. Mokhtarian, G. Hosseinzadeh, M. Farhadian, A. Faghihi, F. Shojaie, J. Energy Chem. 25, 393 (2016)

    Article  Google Scholar 

  24. Z.J. Fan, K. Wang, T. Wei, J. Yan, L.P. Song, B. Shao, Carbon 48, 1670 (2010)

    Article  Google Scholar 

  25. O. Akhavan, M. Abdolahad, Y. Abdi, S. Mohajerzadeh, Carbon 47, 3280 (2009)

    Article  Google Scholar 

  26. S. Ghasemi, A. Esfandiar, S.R. Setayesh, A. Habibi-Yangjeh, A.I. Zad, M.R. Gholami, Appl. Catal. A 462, 82 (2013)

    Article  Google Scholar 

  27. H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, J.H. Li, ACS Nano, 4, 283 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Zhou, M., Zhang, Z. et al. Preparation of TiO2 nanotubes/reduced graphene oxide binary nanocomposites enhanced photocatalytic properties. J Mater Sci: Mater Electron 28, 9416–9422 (2017). https://doi.org/10.1007/s10854-017-6683-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6683-2

Keywords

Navigation