Skip to main content
Log in

Synthesis and enhanced photocatalytic activity of Zr-doped N-TiO2 nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report herein, synthesis of Zr doped N-TiO2 prepared by simple microwave assisted method. From XRD study it reveals that Zr+4 ions are substituted in the lattice of N-TiO2 with average crystallite size of 12 nm. The interplanar distance (d) obtained from HRTEM was found to be 0.35 nm which confirms the anatase phase of TiO2. An optimal Zr content shows lowest PL intensity which supports the reduction in recombination rate of charge carrier species. Moreover, to know photocatalytic activity, we have tested N-TiO2 and Zr doped N-TiO2 nanomaterials for degradation of methyl orange (MO) and gemifloxacin mesylate (GFM, antibiotic drug) under UV light. The photodegradation of MO and GFM were found to be 94 and 89 % within 60 and 40 min respectively. An increment of 45 % in the photodegradation of MO by 0.5 mol% Zr doped TiO2 was obtained as compared to N-TiO2. The probable mechanism for Zr doped N-TiO2 is also discussed. Photodegradation of drug was also supported by decrease in antibiotic activity of photodegraded drug sample against E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X. Luo, F. Deng, L. Min, S. Luo, B. Guo, G. Zeng, C. Au, Environ. Sci. Technol. 47, 7404 (2013)

    Google Scholar 

  2. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  Google Scholar 

  3. N.S. Arul, D. Mangalaraj, P.C. Chen, N. Ponpandian, P. Meena, Y. Masuda, J. Sol–Gel. Sci. Technol. 64, 515 (2012)

    Article  Google Scholar 

  4. S.K. Kansal, P. Kundu, S. Sood, R. Lamba, A. Umar, S.K. Mehta, New J. Chem. 38, 3220 (2014)

    Article  Google Scholar 

  5. D. Chen, Z. Jiang, J. Geng, Q. Wang, D. Yang, Ind. Eng. Chem. Res. 46, 2741 (2007)

    Article  Google Scholar 

  6. S.A. McEwen, P.J. Fedorka-Cray, Clin. Infect. Dis. 34, S93 (2002)

    Article  Google Scholar 

  7. W.V. Kern, E. Andriof, M. Oethinger, P. Kern, J. Hacker, R. Marre, Antimicro. Agen. Chemother 38, 681 (1994)

    Article  Google Scholar 

  8. L. Chagan, Drug Forecast 28, 769 (2003)

    Google Scholar 

  9. H. Sun, Y. Bai, Y. ChPeng, W. Jin, N. Xu, Ind. Eng. Chem. Res. 45, 4971 (2006)

    Article  Google Scholar 

  10. S. Tojo, T. Tachikawa, M. Fujitsuka, T. Majima, J. Phys. Chem. C 112, 14948 (2008)

    Article  Google Scholar 

  11. M.S. Wong, S.W. Hsu, K.K. Rao, C.P. Kumar, J. Mol. Catal. A Chem. 279, 20 (2008)

    Article  Google Scholar 

  12. P.P. Hankare, R.P. Patil, A.V. Jadhav, K.M. Garadkar, R. Sasikala, Appl. Cat. B Environ. 107, 333 (2011)

    Article  Google Scholar 

  13. H. Kato, A. Kudo, J. Phys. Chem. B 106, 5029 (2006)

    Article  Google Scholar 

  14. C.C. Chen, C.S. Lu, Y.C. Chung, J.L. Jan, J. Hazard. Mater. 141, 520 (2007)

    Article  Google Scholar 

  15. Q. Sun, Y, Xu. J. Phys. Chem. C 114, 18911 (2010)

    Article  Google Scholar 

  16. L. Cai, I.S. Cho, M. Logar, A. Mehta, J. He, C.H. Lee, P.M. Rao, Y. Feng, J. Wilcox, F.B. Prinz, X. Zheng, Phys. Chem. Chem. Phys. 16, 12299 (2014)

    Article  Google Scholar 

  17. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)

    Article  Google Scholar 

  18. A.N. Kadam, R.S. Dhabbe, M.R. Kokate, Y.B. Gaikwad, K.M. Garadka, Spectrochim. Acta Part A. 133, 669 (2014)

    Article  Google Scholar 

  19. X.Z. Shen, J. Guo, Z.C. Liu, S.M. Xie, Appl. Surf. Sci. 254, 4726 (2008)

    Article  Google Scholar 

  20. N. Aman, T. Mishra, R.K. Sahu, J.P. Tiwari, J. Mater. Chem. 20, 10876 (2010)

    Article  Google Scholar 

  21. S.M. Chang, R.A. Doong, J. Phys. Chem. B 110, 20808 (2006)

    Article  Google Scholar 

  22. J. Lukáč, M. Klementova, P. Bezdicka, S. Bakardjieva, J. Subrt, L. Szatmary, Z. Bastl, J. Jirkovský, Appl. Catal. B Environ. 74, 83 (2007)

    Article  Google Scholar 

  23. M.B. Gawande, S.N. Shelke, R. Zboril, R.S. Varma, Acc. Chem. Res. 47, 1338 (2014)

    Article  Google Scholar 

  24. K.M. Reddy, S.V. Manorama, A.R. Reddy, Mater. Chem. Phys. 78, 239 (2002)

    Article  Google Scholar 

  25. S. Song, F. Hong, Z. He, H. Wang, X. Xu, J. Chen, Appl. Surf. Sci. 257, 10101 (2011)

    Article  Google Scholar 

  26. J. Wang, Y. Yu, S. Li, L. Guo, E. Wang, Y. Cao, J. Phys. Chem. C 117, 27120 (2013)

    Article  Google Scholar 

  27. N. Venkatachalam, M. Palanichamy, B. Arabindoo, V. Murugesan, J. Mol. Catal. A Chem. 266, 158 (2007)

    Article  Google Scholar 

  28. S.W. Kim, R. Khan, T.J. Kim, W.J. Kim, Bull. Korean Chem. Soc. 29, 1217 (2008)

    Article  Google Scholar 

  29. R.S. Dhabbe, A.N. Kadam, M.B. Suwarnkar, M.R. Kokate, K.M. Garadkar, J. Mater. Sci. Mater. Electron. 25, 3179 (2014)

    Article  Google Scholar 

  30. B.D. Culity, Elements of X-ray diffraction, 2nd edn. (Newyork, Addision-Wesely, 1978), pp. 352–354

    Google Scholar 

  31. G. Sauthier, E. Gyorgy, A. Figueras, R.S. Sanchez, J. Hern, J. Phys. Chem. C 116, 14534 (2012)

    Article  Google Scholar 

  32. P. Zhang, Y. Yu, E. Wang, J. Wang, J. Yao, Y. Cao, ACS Appl. Mater. Interfaces 6, 4622 (2014)

    Article  Google Scholar 

  33. S. Hu, F. Li, Z. Fan, C. Chang, App. Surf. Sci. 258, 182 (2011)

    Article  Google Scholar 

  34. P. Goswami, J.N. Gangul, Dalton Trans. 42, 14480 (2013)

    Article  Google Scholar 

  35. O.K. Mahadwad, P.A. Parikh, R.V. Jasra, C. Patil, Bull. Mater. Sci. 34, 551 (2011)

    Article  Google Scholar 

  36. S.K. Pardeshi, A.B. Patil, Sol. Energy 82, 700 (2008)

    Article  Google Scholar 

  37. Y.M. Wang, S.W. Liu, M.K. Lü, S.F. Wang, F. Gu, X.Z. Gai, X.P. Cui, J. Pan, J. Mol. Catal. A 215, 137 (2004)

    Article  Google Scholar 

  38. M. Estruga, C. Domingo, X. Domènech, J.A. Ayllón, J. Coll. Inter. Sci. 344, 327 (2010)

    Article  Google Scholar 

  39. X. Wu, S. Yin, Q. Dong, C. Guo, T. Kimura, J. Matsushita, T. Sato, J. Phys. Chem. C 117, 8345 (2013)

    Article  Google Scholar 

  40. J. Wang, D.N. Tafen, J.P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li, N. Wu, J. Am. Chem. Soc. 131, 12290 (2009)

    Article  Google Scholar 

  41. S.M. Chang, C.Y. Hou, P.H. Lo, C.T. Chang, App. Cata. B Environ. 90, 233 (2009)

    Article  Google Scholar 

  42. X. Yao, X. Wang, L. Su, H. Yan, M. Yao, J. Mol. Catal. A Chem. 351, 11 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (KMG) is thankful to DST, India for the financial support under Major Research Project SR/S1/PC/0041/2010. All authors are also thankful to DST for providing DST-FIST program to the Chemistry Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalyanrao Garadkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhabbe, R., Kadam, A., Korake, P. et al. Synthesis and enhanced photocatalytic activity of Zr-doped N-TiO2 nanostructures. J Mater Sci: Mater Electron 26, 554–563 (2015). https://doi.org/10.1007/s10854-014-2434-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2434-9

Keywords

Navigation