Skip to main content
Log in

Joining Using Reactive Films for Electronic Applications: Impact of Applied Pressure and Assembled Materials Properties on the Joint Initial Quality

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The use of local and rapid heating of electronic assemblies can significantly reduce the degradation of temperature-sensitive materials and substrate bowing commonly encountered in electronic applications during the high temperature reflow process. It can also allow assembling electronic packages on a non-planar surface and/or on massive structures that are very complex using a conventional oven for soldering. In order to attach electronic components to substrates, a rapid soldering process using an exothermic reactive foil sandwiched between solder preforms was evaluated. Once the film was activated and reacted, the solder preforms were melted to ensure the adhesion between the assembled materials. The effect of applied pressure on the joint quality, the reactive film thickness, as well as the attached material thickness and physical properties were assessed. Using a 60 μm thick reactive foil with two 25 μm thick SnAgCu305 preforms, results show that the fraction of void-free interfacial area between a metallized diode and an active metal braze substrate increased from 34% to 74% with pressure values between 0.5 kPa and 100 kPa, respectively. At a constant pressure of 13 kPa, increasing the reactive foil thickness from 40 μm to 60 μm leads to an increase in the void-free interfacial attach area ratio from 20% to 40%, and a value of 54% was achieved by using two 60 μm foils under the same conditions. The substrate metallization and solder thickness also affect the joint quality. The experimental results are analyzed and correlated with the duration of liquid solder using thermal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kyung-ah, L. Anna, L. Gerald, G. Manuel, H. Toshiro, H. Richard, S. Leif, and S. William, Nanosci. Nanotechnol. Lett. 2, 2 (2010).

    Google Scholar 

  2. T. Funaki, J. C. Balda, J. Junghans, A. A. Kashyap, F.D. Barlow, H. A. Mantooth, T. Kimoto, and T. Hikihara, IEICE Electron Express 1, 523 (2004).

  3. V.R. Manikam and K.Y. Cheong, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 4 (2011).

    Article  Google Scholar 

  4. C. Buttay, A, Masson, J. Li, M. Johnson, M. Lazar, C Raynaud, and H. Morel, IMAPS High Temperature Electronics Network HITEN, pp. 1–7 (2011).

  5. M. Knoerr, S. Kraft, and A. Schletz, in 12th Electronics Packaging Technology Conference (2010). https://doi.org/10.1109/eptc.2010.5702605.

  6. S.J. Pearton, J.C. Zolper, R.J. Shul, and F. Re, J. Appl. Phys. 86, 1 (1999).

    Article  CAS  Google Scholar 

  7. P. Neudeck, R. Okojie, and L. Chen, Proc. IEEE 90, 6 (2002). https://doi.org/10.1109/JPROC.2002.1021571.

    Article  Google Scholar 

  8. R. Khazaka, L. Mendizabal, D. Henry, and R. Hanna, IEEE Trans. Power Electron. 30, 5 (2015).

    Google Scholar 

  9. P. Hagler, P. Henson, and R.W. Johnson, IEEE Trans. Ind. Electron. 58, 7 (2011).

    Article  Google Scholar 

  10. J. Wang, E. Besnoin, O.M. Knio, and T.P. Weihs, J. Appl. Phys. 97, 114307 (2005).

    Article  Google Scholar 

  11. R. Khazaka, L. Mendizabal, and D. Henry, J. Electron. Mater. 43, 7 (2014).

    Article  Google Scholar 

  12. R. Khazaka, B. Thollin, L. Mendizabal, D. Henry, R. Khazaka, and R. Hanna, IEEE Trans. Device Mater. Rel. 15, 2 (2015).

    Article  Google Scholar 

  13. M. Zenou, O. Ermak, A. Saar, and Z.Kotler, J.Phys. D Appl. Phys. 47, 025501 (2014).

  14. S. Magdassi, M. Grouchko, and A. Kamyshny, Materials. (2010). https://doi.org/10.3390/ma3094626.

    Article  Google Scholar 

  15. T. Wang, X. Chen, G.Q. Lu, and G.Y. Lei, J. Electron. Mater. 36, 10 (2007).

    CAS  Google Scholar 

  16. K. Schnabl, L. Wentlent, K. Mootoo, S. Khasawneh, A. Zinn, J. Beddow, E. Hauptfleisch, D. Blass, and P. Borgensen, J. Electron. Mater. 43, 12 (2014).

    Article  Google Scholar 

  17. P. Świerzy, Y. Farraj, A. Kamyshny, and S. Magdassi, Colloids Surf. A 521, 272 (2017).

  18. X. Yu, J. Li, T. Shi, C. Cheng, G. Liao, J. Fan, T. Li, and Z. Tang, J. Alloys Comp. 724, 365 (2017)

  19. G.Q. Lu, W. Li, Y. Mei, G. Chen, X. Li, and X. Chen, IEEE Trans. Device Mater. Reliab. 14, 2 (2014).

    Article  Google Scholar 

  20. W.C. Welch and K. Najafi, in IEEE International Conference on Micro Electro Mechanical Systems proceeding (2008). https://doi.org/10.1109/memsys.2008.4443779

  21. T. Hu, H. Chen, M. Li, and Z. Zhao, IEEE Trans. Power Electron 32, 1 (2016).

    Google Scholar 

  22. J. Wang, E. Besnoin, O.M. Knio, and T.P. Weihs, J. Appl. Phys. 95, 1 (2004).

    Article  Google Scholar 

  23. X. Qiu, Reactive Multilayer Foils and Their Applications in Joining, Master Thesis at Louisiana State University (2007).

  24. R. Diehm, M. Nowottnick, and U. Pape, IPC APEX EXPO vol. 1, pp. 425–442 (2012)

  25. J. Wang, E. Besnoin, O.M. Knio, and T.P. Weihs, Acta Mater. 52, 5235 (2004).

  26. R. Dou, T. Ge, X. Liu, and Z. Wen, Int. J. Heat Mass Transf. 94, 156 (2016).

  27. N. Zhao, X.M. Pan, D.Q. Yu, H.T. Ma, and L. Wang, J. Electron. Mater. 38, 6 (2009).

    CAS  Google Scholar 

  28. J. Chang, L. Wang, J. Dirk, and X. Xie, Weld. J. 85, 63 (2006).

  29. Military Standard, Test Methods standard microcircuits, Mil-Std-883E Method 2030, Ultrasound inspection of die attach (1996).

  30. K. Otiaba, R. Bhatti, N. Ekere, S. Mallik, E. Amalu, and M. Ekpu, in 3rd IEEE International Conference on Adaptive Science and Technology ICAST (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabih Khazaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khazaka, R., Martineau, D. & Azzopardi, S. Joining Using Reactive Films for Electronic Applications: Impact of Applied Pressure and Assembled Materials Properties on the Joint Initial Quality. J. Electron. Mater. 47, 7053–7061 (2018). https://doi.org/10.1007/s11664-018-6631-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6631-9

Keywords

Navigation