Skip to main content
Log in

Temperature and Interfacial Layer Effects on the Electrical and Dielectric Properties of Al/(CdS-PVA)/p-Si (MPS) Structures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the present study, cadmium sulphide (CdS) nanopowders were prepared by using a simple physical ball milling technique, and their x-ray diffraction (XRD) analysis confirmed the formation of hexagonal wurtzite structure of CdS. The morphology of CdS nanopowders was characterized by scanning electron microscope (SEM). Dielectric and electrical properties of the manufactured Al/(CdS-PVA)/p-Si (MPS) type structures were investigated by capacitance–voltage (CV) and conductance–voltage (G/ωV) measurements as functions of temperature and applied bias voltage at 500 kHz. Some main parameters of the structure such as real and imaginary parts of complex dielectric constants, ε′(= ε′jε″), loss tangent (tan δ), a.c. electrical conductivity (σac), and real and imaginary parts of complex electric modulus, M*(= M′ + jM″) of the structure were investigated in the temperature range between 230 K and 340 K. Ln(σac)–q/kT curve showed a linear behavior. The value of activation energy (Ea) was obtained as 0.0601 eV at 5.0 V from the slope of this curve. Moreover, argand diagrams of complex modulus were studied to determine relaxation process of these structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.K. Khanna and N. Singh, J. Lumin. 127, 474 (2007).

    Article  CAS  Google Scholar 

  2. A. Dey, S. De, A. De, and S.K. De, Nanotechnology 15, 1277 (2004).

    Article  CAS  Google Scholar 

  3. W. Cai, X. Gong, and Y. Cao, Sol. Energy Mater. Sol. C 94, 114 (2010).

    Article  CAS  Google Scholar 

  4. A. Demir, S. Bağcı, S.E. San, and Z. Doğruyol, Surf. Rev. Lett. 22, 1550038 (2015).

    Article  CAS  Google Scholar 

  5. A. Demir, A. Atahan, S. Bağcı, M. Aslan, and M.S. Islam, Philos. Mag. 96, 274 (2016).

    Article  CAS  Google Scholar 

  6. S.K. Mishra, R.K. Srivastava, S.G. Prakash, R.S. Yadav, and A.C. Panday, J. Alloys Compd. 513, 118 (2012).

    Article  CAS  Google Scholar 

  7. R.R. Navan, B. Panigrahy, M.S. Baghini, D. Bahadur, and V.R. Rao, Compos. Part B Eng. 43, 1645 (2012).

    Article  CAS  Google Scholar 

  8. S.L. Hake, P.A. Chate, D.J. Sathe, P.P. Hankare, and V.M. Bhuse, J. Mater. Sci. Mater. Electron. 25, 811 (2014).

    Article  CAS  Google Scholar 

  9. E. Maier, A. Fischereder, W. Haas, G. Mauthner, J. Albering, T. Rath, F. Hofer, E.J.W. List, and G. Trimmel, Thin Solid Films 519, 4201 (2011).

    Article  CAS  Google Scholar 

  10. T.P. Nguyen, Surf. Coat. Technol. 206, 742 (2011).

    Article  CAS  Google Scholar 

  11. Z. Han, J. Zhang, X. Yang, and W. Cao, Sol. Energy Mater. Sol. C 95, 483 (2011).

    Article  CAS  Google Scholar 

  12. Y. Azizian-Kalandaragh, F. Sedaghatdoust-Bodagh, E. Alizadeh-Gheshlaghi, and A. Khodayari, J. Nanoelectron. Optoelectron. 12, 231 (2017).

    Article  Google Scholar 

  13. P. Eskandari, F. Kazemi, and Y. Azizian-Kalandaragh, Sep. Purif. Technol. 120, 180 (2013).

    Article  CAS  Google Scholar 

  14. Y. Azizian-Kalandaragh, U. Aydemir, and S. Altindal, J. Electron. Mater. 43, 4 (2014).

    Article  Google Scholar 

  15. Y. Azizian-Kalandaragh, Optoelectron. Adv. Mater. Rapid Commun. 4, 1655 (2010).

    CAS  Google Scholar 

  16. D. Rezaei-Ochbelagh, Y. Azizian-Kalandaragh, and A. Khodayari, Optoelectron. Adv. Mater. Rapid Commun. 4, 881 (2010).

    CAS  Google Scholar 

  17. Y. Azizian Kalandaragh, M.B. Muradov, R.K. Mamedov, and A. Khodayari, J. Cryst. Growth 305, 175 (2007).

    Article  CAS  Google Scholar 

  18. Y.A. Kalandaragh, M.B. Muradov, R.K. Mamedov, M. Behboudnia, and A. Khodayari, Adv. Mater. Rapid Commun. 2, 42 (2008).

    CAS  Google Scholar 

  19. V. Singh, P.K. Sharma, and P. Chauhan, Mater. Charact. 62, 43 (2011).

    Article  CAS  Google Scholar 

  20. K. Susa, T. Kobayashi, and S. Taniguchi, J. Solid State Chem. 33, 197 (1980).

    Article  CAS  Google Scholar 

  21. A. Kaya, İ. Yücedağ, H. Tecimer, and Ş. Altındal, Mater. Sci. Semicond. Proc. 28, 26 (2014).

    Article  CAS  Google Scholar 

  22. H. Wang, P. Fang, Z. Chen, and S. Wang, Appl. Surf. Sci. 253, 8495 (2007).

    Article  CAS  Google Scholar 

  23. S.R. Forrest, Org. Electron. 4, 45 (2003).

    Article  Google Scholar 

  24. P.L. Burn, S.C. Lo, and I.D.W. Samuel, Adv. Mater. 19, 1675 (2007).

    Article  CAS  Google Scholar 

  25. İ. Yücedağ, A. Kaya, and Ş. Altındal, Int. J. Mod. Phys. B 28, 1450153 (2014).

    Article  Google Scholar 

  26. H. Tecimer, H. Uslu, Z.A. Alahmed, F. Yakuphanoğlu, and Ş. Altındal, Compos. Part B Eng. 57, 25 (2014).

    Article  CAS  Google Scholar 

  27. İ. Yücedağ, G. Ersöz, A. Gümüş, and ş. Altındal, Int. J. Mod. Phys. B 29, 1550075 (2015).

    Article  Google Scholar 

  28. T. Tunç, Ş. Altındal, İ. Dökme, and H. Uslu, J. Electron. Mater. 40, 157 (2011).

    Article  Google Scholar 

  29. V.R. Reddy, Thin Solid Films 556, 300 (2014).

    Article  CAS  Google Scholar 

  30. S.M. Sze, Physics of Semiconductor Devices (New York: Wiley, 1981).

    Google Scholar 

  31. E.H. Rhoderick and R.H. Williams, Metal–Semiconductor Contacts (Oxford: Clarendon Press, 1988).

    Google Scholar 

  32. J.H. Werner and H.H. Güttler, J. Appl. Phys. 69, 1522 (1991).

    Article  CAS  Google Scholar 

  33. A. Gümüş, G. Ersöz, İ. Yücedağ, S. Bayrakdar, and ş. Altındal, J. Korean Phys. Soc. 67, 889 (2015).

    Article  Google Scholar 

  34. Ç. Bilkan, S. Zeyrek, S.E. San, and Ş. Altındal, Mater. Sci. Semicond. Proc. 32, 137 (2015).

    Article  CAS  Google Scholar 

  35. G. Ersöz, İ. Yücedağ, Y. Azizian-Kalandaragh, İ. Orak, and Ş. Altındal, IEEE Trans. Electron. Dev. 63, 2948 (2016).

    Article  Google Scholar 

  36. İ. Dökme and Ş. Altındal, IEEE Trans. Electron. Dev. 58, 4042 (2011).

    Article  Google Scholar 

  37. Ş. Altındal, İ. Yücedağ, and A. Tataroğlu, Vacuum 84, 363 (2009).

    Article  Google Scholar 

  38. N. Baraz, İ. Yücedağ, Y. Azizian-Kalandaragh, and Ş. Altındal, J. Mater. Sci. Mater. Electron. 28, 1315 (2017).

    Article  CAS  Google Scholar 

  39. İ. Yücedağ, Optoelectron. Adv. Mater. Rapid Commun. 3, 612 (2009).

    Google Scholar 

  40. B. Kınacı and S. Özçelik, J. Electron. Mater. 42, 1108 (2013).

    Article  Google Scholar 

  41. D. Maurya, J. Kumar, and Shripal, J. Phys. Chem. Solids 66, 1614 (2005).

    Article  CAS  Google Scholar 

  42. İ. Yücedağ, A. Kaya, H. Tecimer, and Ş. Altındal, Mater. Sci. Semicond. Proc. 28, 37 (2014).

    Article  Google Scholar 

  43. M.R.R. Raju, R.N.P. Choudhary, and S. Ram, Phys. Status Solidi B 239, 480 (2003).

    Article  CAS  Google Scholar 

  44. S.A. Awan and R.D. Gould, Thin Solid Films 423, 267 (2003).

    Article  CAS  Google Scholar 

  45. C.V. Kannan, S. Ganesamoorthy, C. Subramanian, and P. Ramasamy, Phys. Status Solidi A 196, 465 (2003).

    Article  CAS  Google Scholar 

  46. K.S. Moon, H.D. Choi, A.K. Lee, K.Y. Cho, H.G. Yoon, and K.S. Suh, J. Appl. Polym. Sci. 77, 1294 (2000).

    Article  CAS  Google Scholar 

  47. A. Tataroğlu, Ş. Altındal, and M.M. Bülbül, Microelectron. Eng. 81, 140 (2005).

    Article  Google Scholar 

  48. S. Maity, D. Bhattacharya, and S.K. Ray, J. Phys. D Appl. Phys. 44, 095403 (2011).

    Article  Google Scholar 

  49. A. Tataroğlu, Microelectron. Eng. 83, 2551 (2006).

    Article  Google Scholar 

  50. M.O. Aboelfotoh, A. Cros, B.G. Svensson, and K.N. Tu, Phys. Rev. B 41, 9819 (1990).

    Article  CAS  Google Scholar 

  51. P. Pissis and A. Kyritsis, Solid State Ionics 97, 105 (1997).

    Article  CAS  Google Scholar 

  52. K. Prabakar, S.K. Narayandass, and D. Mangalaraj, Phys. Status Solidi A 199, 507 (2003).

    Article  CAS  Google Scholar 

  53. E. Barsoukov and J.R. Macdonald, Impedance Spectroscopy (Hoboken: Wiley, 2005).

    Book  Google Scholar 

  54. Y.Ş. Asar, T. Asar, Ş. Altındal, and S. Özçelik, Philos. Mag. 95, 2885 (2015).

    Article  Google Scholar 

  55. I.M. Hodge, K.L. Ngai, and C.T. Moynihan, J. Non-Cryst. Solids 351, 104 (2005).

    Article  CAS  Google Scholar 

  56. K.S. Cole and R.H. Cole, J. Chem. Phys. 9, 3411 (1941).

    Google Scholar 

  57. A. Kaya, S. Alialy, S. Demirezen, M. Balbaşı, S.A. Yerişkin, and A. Aytimur, Ceram. Int. 42, 3322 (2016).

    Article  CAS  Google Scholar 

  58. S.A. Yerişkin, M. Balbaşı, and A. Tataroğlu, J. Appl. Polym. Sci. 133, 43827 (2016).

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by Düzce University Scientific Research Project (Project Number: 2017.07.02.567) and Gazi University Scientific Research Project (Project Number: GUBAP.05/2018-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İbrahim Yücedağ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ersöz Demir, G., Yücedağ, İ., Azizian-Kalandaragh, Y. et al. Temperature and Interfacial Layer Effects on the Electrical and Dielectric Properties of Al/(CdS-PVA)/p-Si (MPS) Structures. J. Electron. Mater. 47, 6600–6606 (2018). https://doi.org/10.1007/s11664-018-6578-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6578-x

Keywords

Navigation