Skip to main content
Log in

Dielectric and Optical Properties of CdS–Polymer Nanocomposites Prepared by the Successive Ionic Layer Adsorption and Reaction (SILAR) Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The successive ionic layer adsorption and reaction (SILAR) method has been used to grow epitaxial CdS–polymer nanostructures as thin films with different surface morphology and particle size. The main purpose of the study was to investigate the dielectric properties and a.c. electrical conductivity (σ a.c.), by a.c. impedance spectroscopy between 1 kHz and 1 MHz, at room temperature, of CdS–polymer nanocomposites produced by use of 2, 6, and 10 cycles of SILAR. The surface morphology and optical absorption of the samples were characterized by scanning electron microscopy (SEM) and UV–visible spectroscopy, respectively. Determination of the energy gaps of CdS–polymer nanocomposites prepared by use of different numbers of cycles of SILAR reveals that the band gap decreases with increasing number of cycles (J. Cryst. Growth 305, 175–180, 2007). This behavior is because of the growth of nanoparticles in the matrix materials, and can be explained by changes in the amount of confinement as a consequence of particle size variation. SEM images also confirm that different numbers of cycles lead to different morphology. Frequency-dependent dielectric properties and a.c. electrical conductivity of the samples prepared by use of different numbers of cycles of SILAR were investigated, and comparative studies on some electrophysical properties of the samples are reported. Experimental results show that values of the dielectric constant (ε′), dielectric loss (ε″), dielectric loss tangent (tanδ), the real (M′) and imaginary (M″) parts of electric modulus, and σ a.c. are highly dependent on the frequency and the number of cycles. It can be concluded that changing the frequency and the number of cycles substantially alters both the dielectric properties and a.c. electrical conductivity of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Azizian kalandaragh, M.B. Muradov, R.K. Mammedov, and A. Khodayari, J. Cryst. Growth 305, 175–180 (2007).

    Article  Google Scholar 

  2. P.K. Khanna and Narendra Singh, J. Lumin. 127, 474–482 (2007).

    Article  Google Scholar 

  3. A. Dey, S. De, A. De, and S.K. De, Nanotechnology 15, 1277–1283 (2004).

    Article  Google Scholar 

  4. H. Geng, Y. Guo, R. Peng, Sh Han, and M. Wang, Sol. Energy Mater. Sol. Cells 94, 1293–1299 (2010).

    Article  Google Scholar 

  5. H. Yang, O.A. Ileperuma, M. Shimomura, and K. Murakami, Sol. Energy Mater. Sol. Cells 93, 1083–1086 (2009).

    Article  Google Scholar 

  6. W. Cai, X. Gong, and Y. Cao, Sol. Energy Mater. Sol. Cells 94, 114–127 (2010).

    Article  Google Scholar 

  7. W.U. Huynh, X. Peng, and A.P. Alivisatos, Adv. Mater. 11, 932 (1999).

    Article  Google Scholar 

  8. J.M. Lee, C.P. Judge, and S.W. Wright, Solid State Electron. 44, 1431–1434 (2000).

    Article  Google Scholar 

  9. M. Jørgensen, K. Norrman, and F.C. Krebs, Sol. Energy Mater. Sol. Cells 92, 686–714 (2008).

    Article  Google Scholar 

  10. Y. Azizian-Kalandaragh and A. Khodayari, Mat. Sci. Sem. Proc. 13, 225–230 (2010).

    Article  Google Scholar 

  11. D. Rezaei-Ochbelagh, Y. Azizian-Kalandaragh, and A. Khodayari, Optoelect. Adv. Mater-RC 4, 881–883 (2010).

    Google Scholar 

  12. Y. Azizian-Kalandaragh, Optoelect. Adv. Mater-RC 4, 1655–1658 (2010).

    Google Scholar 

  13. Y. Azizian-Kalandaragh, Optoelect. Adv. Mater-RC 4, 174–179 (2010).

    Google Scholar 

  14. P.K. Ghosh, S. Jana, U.N. Maity, and K.K. Chattopadhyay, Physica E 35, 178–182 (2006).

    Article  Google Scholar 

  15. J.S. Jie, W.J. Zhang, Y. Jiang, X.M. Meng, Y.Q. Li, and S.T. Lee, Nano Lett. 6, 1887–1892 (2006).

    Article  Google Scholar 

  16. L. Wang, Y. Liu, X. Jiang, D. Qin, Y. Cao, and J. Phys, Chem. C 111, 9538–9542 (2007).

    Google Scholar 

  17. X. Jiang, F. Chen, H. Xu, L. Yang, W. Qiu, M. Shi, M. Wang, and H. Chen, Sol. Energy Mater. Sol. Cells 94, 338–344 (2010).

    Article  Google Scholar 

  18. G.L. Tan, Y. Chen, and X.F. Yu, Nanotechnology 21, 035701 (2010).

    Article  Google Scholar 

  19. K. Susumu, H.T. Uyeda, I.L. Medintz, T. Pons, J.B. Delehanty, and H. Mattoussi, J. Am. Chem. Soc. 129, 13987–13996 (2007).

    Article  Google Scholar 

  20. A. Boulesbaa, A. Issac, D. Stockwell, Z. Huang, J. Huang, and J. Guo, et al., J. Am. Chem. Soc. 129, 15132–15133 (2007).

    Article  Google Scholar 

  21. T. Cui, J. Zhang, J. Wang, F. Cui, W. Chen, and F. Xu, et al., Adv. Funct. Mater. 15, 481–486 (2005).

    Article  Google Scholar 

  22. P.S. Chowdhury, P. Ghosh, and A. Patra, J. Lumin. 124, 327–332 (2007).

    Article  Google Scholar 

  23. J.R. Lakowicz, I. Gryczynski, G. Piszczek, and C.J. Murphy, J Phys Chem B 106, 5365–5370 (2002).

    Article  Google Scholar 

  24. C. Burda, X. Chen, R. Narayanan, and M.A. El-Sayed, Chem. Rev. 105, 1025–1102 (2005).

    Article  Google Scholar 

  25. S. Kuchibhatla, A.S. Karakoti, D. Bera, and S. Seal, Prog. Mater Sci. 52, 699–913 (2007).

    Article  Google Scholar 

  26. A. Eychmuller, J. Phys. Chem. B 104, 6514–6528 (2000).

    Article  Google Scholar 

  27. D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chem. Rev. 106, 1105–1136 (2006).

    Article  Google Scholar 

  28. M. Mumtaz and N.A. Khan, Physica C 469, 728 (2009).

    Article  Google Scholar 

  29. N.A. Kahn, M. Mumtaz, and A.A. Khurram, J. Appl. Phys. 104, 033916 (2008).

    Article  Google Scholar 

  30. L.L. Hench and J.L. West, Principles of Electronic Ceramics (New York: Wiley, 1990).

    Google Scholar 

  31. I.M. Afandiyeva, I. Dökme, Ş. Altındal, M.M. Bülbül, and A. Tataroğlu, Microelectron. Eng. 85, 247 (2008).

    Article  Google Scholar 

  32. V.V. Klechkovskaya, V.N. Maslov, M.B. Muradov, and S. Semiletov, Sov. Phys. Crystallogr. 34, 105 (1989).

    Google Scholar 

  33. V.V. Klechkovskaya, V.N. Maslov, M.B. Muradov, and S. Semiletov, Izv. Akad. Nauk SSSR. Ser. Fiz 52, 1324 (1988).

    Google Scholar 

  34. V.P. Tolstoi, Russ. Chem. Rev. (English Translation) 62, 237 (1993).

    Article  Google Scholar 

  35. S. Lindroos, T. Kanniainen, and M. Leskela, Appl. Surf. Sci. 75, 70 (1994).

    Article  Google Scholar 

  36. S. Lindroos, T. Kanniainen, and M. Leskela, Thin Solid Films 263, 79 (1995).

    Article  Google Scholar 

  37. Y.F. Nicolau and J.C. Minnard, J. Crystal Growth 92, 128 (1988).

    Article  Google Scholar 

  38. Y. Wang and N. Herron, J. Phys. Chem. 95, 525–532 (1991).

    Article  Google Scholar 

  39. F. Kremer, A. Schonhals, and W. Luck, Broadband Dielectric Spectroscopy (Berlin: Springer, 2002).

    Google Scholar 

  40. H.M. Pathan and C.D. Lokhande, Indian Acad. Sci. 27, 85 (2003).

    Google Scholar 

  41. M. Popescu and I. Bunget, Physics of Solid Dielectrics (Amsterdam: Elsevier, 1984).

    Google Scholar 

  42. N.G. McCrum, B.E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (London: Wiley, 1967).

    Google Scholar 

  43. P. Pissis and A. Kyritsis, Solid State Ionics 97, 105 (1997).

    Article  Google Scholar 

  44. A.A. Sattar and S.A. Rahman, Phys. Status Solid 200, 415 (2003).

    Article  Google Scholar 

  45. S. Altındal, H. Yeriskin, İbrahım Unal, and B. Sarı, J. Appl. Polym. Sci. 120, 390 (2011).

    Article  Google Scholar 

  46. G.C. Psarras, E. Manolakaki, and G.M. Tsangaris, Compos. Part A 34, 1187 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashar Azizian-Kalandaragh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azizian-Kalandaragh, Y., Aydemir, U. & Altindal, Ş. Dielectric and Optical Properties of CdS–Polymer Nanocomposites Prepared by the Successive Ionic Layer Adsorption and Reaction (SILAR) Method. J. Electron. Mater. 43, 1226–1231 (2014). https://doi.org/10.1007/s11664-014-2998-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-2998-4

Keywords

Navigation