Skip to main content
Log in

Acoustic Phonons and Mechanical Properties of Ultra-Thin Porous Low-k Films: A Surface Brillouin Scattering Study

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

To reduce the RC (resistance–capacitance) time delay of interconnects, a key development of the past 20 years has been the introduction of porous low-k dielectrics to replace the traditional use of SiO2. Moreover, in keeping pace with concomitant reduction in technology nodes, these low-k materials have reached thicknesses below 100 nm wherein the porosity becomes a significant fraction of the film volume. The large degree of porosity not only reduces mechanical strength of the dielectric layer but also renders a need for non-destructive approaches to measure the mechanical properties of such ultra-thin films within device configurations. In this study, surface Brillouin scattering (SBS) is utilized to determine the elastic constants, Poisson’s ratio, and Young’s modulus of these porous low-k SiOC:H films (∼ 25–250 nm thick) grown on Si substrates by probing surface acoustic phonons and their dispersions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.W. King, H. Simka, D. Herr, H. Akinaga, and M. Garner, APL Mater. 1, 040701 (2013).

    Article  Google Scholar 

  2. M. Bohr, in Proceedings of the IEEE International Electronic Devices Meeting (1995), p. 241.

  3. W. Volksen, R. Miller, and G. Dubois, Chem. Rev. 110, 56 (2010).

    Article  Google Scholar 

  4. K. Maex, M.R. Baklanov, D. Shamiryan, F. Iacopi, S.H. Brongersma, and Z.S. Yanovitskaya, J. Appl. Phys. 93, 8793 (2003).

    Article  Google Scholar 

  5. A. Grill, Annu. Rev. Mater. Res. 39, 49 (2009).

    Article  Google Scholar 

  6. L. Prager, P. Marsik, L. Wenrich, M.R. Baklanov, S. Naumov, L. Pistol, D. Schneider, J.W. Gerlach, P. Verdonck, and M.R. Buchmesier, Microelectron. Eng. 85, 196 (2004).

    Google Scholar 

  7. M. Baklanov, J. de Marneffe, D. Shamiryan, A. Urbanowicz, H. Shi, T. Rakhimova, H. Huang, and P. Ho, J. Appl. Phys. 113, 041101 (2013).

    Article  Google Scholar 

  8. G. Stan, R.S. Gates, P. Kavuri, J. Torres, D. Michalak, D. Ege, J. Bielefeld, and S.W. King, Appl. Phys. Lett. 105, 152906 (2014).

    Article  Google Scholar 

  9. L. Kljucar, M. Gonzalez, I. De Wolf, K. Croes, J. Bommels, and Z. Tokei, Microelectron. Reliab. 56, 93 (2016).

    Article  Google Scholar 

  10. E. Andideh, M. Lerner, G. Palmrose, S. El-Mansy, T. Scherban, G. Xu, and J. Blaine, J. Vac. Sci. Technol. B 22, 196 (2004).

    Article  Google Scholar 

  11. A. Grill, J. Appl. Phys. 93, 1785 (2003).

    Article  Google Scholar 

  12. C.A. Yuan, O. Sluis, G.Q. Zhang, L.J. Ernst, W.D. Driel, R.B.R. Silfhout, and B.J. Thijsse, Comput. Mater. Sci. 42, 606 (2008).

    Article  Google Scholar 

  13. A. Volinksy, J. Vella, and W. Gerberich, Thin Solid Films 429, 201 (2003).

    Article  Google Scholar 

  14. M. Hussein and J. He, IEEE Trans. Semicond. Manuf. 18, 69 (2005).

    Article  Google Scholar 

  15. S.W. King and J.A. Gradner, Microelectron. Reliab. 49, 721 (2009).

    Article  Google Scholar 

  16. T. Scherban, B. Sun, J. Blaine, C. Block, B. Jin, and E. Andideh, in Proceedings of the IEEE International Interconnect Technology Conference (2001), p. 257.

  17. E.G. Linger and E.E. Simonyi, J. Appl. Phys. 96, 3482 (2004).

    Article  Google Scholar 

  18. K. Yonekura, S. Sakamori, K. Goto, M. Matsuura, N. Fujiwara, and M. Yoneda, J. Vac. Sci. Technol. B 22, 548 (2004).

    Article  Google Scholar 

  19. W. Zhou, S. Bailey, R. Sooryakumar, S. King, G. Xu, E. Mays, C. Ege, and J. Bielefeld, J. Appl. Phys. 110, 043520 (2011).

    Article  Google Scholar 

  20. S. Bailey, E. Mays, D.J. Michalak, R. Chebiam, S. King, and R. Sooryakumar, J. Phys. D Appl. Phys. 46, 1 (2013).

    Article  Google Scholar 

  21. M.F. Doerner and W.D. Nix, J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  22. H. Li, K. Lin, and C. Ege, J. Appl. Phys. 117, 115303 (2015).

    Article  Google Scholar 

  23. R.J. Nay, O.L. Warren, D. Yang, and T.J. Wyrobek, Microelectron. Eng. 75, 103 (2004).

    Article  Google Scholar 

  24. D. Morris and R. Cook, J. Mater. Res. 23, 2428 (2008).

    Google Scholar 

  25. B. Daly, S. Bailey, R. Sooryakymar, and S.W. King, J. Nanophotonics 7, 073094 (2013).

    Article  Google Scholar 

  26. G.W. Farnell and E.L. Adler, Physical Acoustics, vol. 9, ed. W.P. Mason and N. Thurston (New York: Academic Press, 1972), p. 35.

    Google Scholar 

  27. A. Link, R. Sooryakumar, R.S. Bandhu, and G.A. Antonelli, J. Appl. Phys. 100, 013507 (2006).

    Article  Google Scholar 

  28. J.D. Comins, Handbook of Elastic Properties of Solids, Liquids, and Gases, vol. 1, ed. M. Levy, H. Bass, and R. Stern (New York: Academic Press, 1972), p. 349.

    Google Scholar 

  29. M.G. Beghi, A.G. Every, V. Prakapenka, and P.V. Zinin, Ultrasonic and Electromagnetic NDE for Structure and Material Characterization, ed. T. Kundu (Boca Raton: CRC Press, 2012), p. 539.

    Google Scholar 

  30. X. Zhang, J.D. Comins, A.G. Every, P.R. Stoddart, W. Pang, and T.E. Derry, Phys. Rev. B 58, 13677 (1998).

    Article  Google Scholar 

  31. J.M. Karanikas and R. Sooryakumar, Phys. Rev. B 39, 1388(R) (1989).

    Article  Google Scholar 

  32. J. Zizka, S. King, A.G. Every, and R. Sooryakumar, J. Appl. Phys. 119, 144102 (2016).

    Article  Google Scholar 

  33. R. Loudon and J.R. Sandercock, J. Phys. C 13, 2609 (1980).

    Article  Google Scholar 

  34. A. Pinczuk and E. Burstein, Light Scattering in Solids, vol. 1, ed. M. Cardona (Heidelberg: Springer, 1983), p. 23.

    Chapter  Google Scholar 

  35. V. Rouessac, L. Favennec, B. Remiat, V. Jousseaume, G. Passemard, and J. Durand, Microelectron. Eng. 82, 333 (2005).

    Article  Google Scholar 

  36. V. Jousseaume, A. Zenasni, L. Favennec, G. Gerbaud, M. Bardet, J.P. Simon, and A. Humbert, J. Electrochem. Soc. 154, G103 (2007).

    Article  Google Scholar 

  37. M.R. Baklanov, K.P. Mogilnikov, V.G. Polovinkin, and F.N. Dultsev, J. Vac. Technol. B 18, 1385 (2000).

    Article  Google Scholar 

  38. S. King, R. Chu, G. Xu, and J. Huening, Thin Solid Films 518, 4898 (2010).

    Article  Google Scholar 

  39. X. Zhang, R. Sooryakumar, A.G. Every, and W.H. Manghnani, Phys. Rev. B 640, 081402 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sooryakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zizka, J., King, S., Every, A. et al. Acoustic Phonons and Mechanical Properties of Ultra-Thin Porous Low-k Films: A Surface Brillouin Scattering Study. J. Electron. Mater. 47, 3942–3950 (2018). https://doi.org/10.1007/s11664-018-6276-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6276-8

Keywords

Navigation