Skip to main content
Log in

Systematic Studies of Periodically Nanoporous Si Films for Thermoelectric Applications

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

As the major heat carriers in dielectrics and semiconductors, phonons are strongly scattered by boundaries and interfaces at the nanoscale, which can lead to a significantly reduced lattice thermal conductivity kL. In recent years, such phonon size effects have been used to enhance the thermoelectric performance of various nanostructured materials. With dramatically reduced kL and bulk-like electrical properties, high thermoelectric performance has been demonstrated for nanoporous Si films at room temperature. Despite these encouraging results, however, challenges still exist in the theoretical explanation of the observed low kL values. Existing studies mainly attribute the observed low kL to phononic effects and/or amorphous pore edges. These two effects can be separated when the specific heat of the film can be measured along with kL to provide more insight into the phonon dispersion modification. In this work, both the specific heat and k of a suspended nanoporous Si film is extracted from the 3ω measurements. The result is compared to the reported kL values of various porous Si films. The influence of employed phonon mean free path spectrum on the data analysis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Goldsmid, Thermoelectric Refrigeration (Plenum Press, New York, 1964).

    Book  Google Scholar 

  2. J. Yang and F. R. Stabler, J. Electron. Mater. 38, 1245 (2009).

    Article  CAS  Google Scholar 

  3. D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, Nat. Mater. 10, 532 (2011).

    Article  CAS  Google Scholar 

  4. D. Song and G. Chen, Appl. Phys. Lett. 84, 687 (2004).

    Article  CAS  Google Scholar 

  5. J.-K. Yu, S. Mitrovic, D. Tham, J. Varghese, and J. R. Heath, Nat. Nanotechnol. 5, 718 (2010).

    Article  CAS  Google Scholar 

  6. J. Tang, H.-T. Wang, D. H. Lee, M. Fardy, Z. Huo, T. P. Russell, and P. Yang, Nano Lett. 10, 4279 (2010).

    Article  CAS  Google Scholar 

  7. P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phinney, and I. El-Kady, Nano Lett. 11, 107 (2011).

    Article  CAS  Google Scholar 

  8. J.-H. Lee, J. C. Grossman, J. Reed, and G. Galli, Appl. Phys. Lett. 91, 223110 (2007).

    Article  Google Scholar 

  9. J.-H. Lee, G. A. Galli, and J. C. Grossman, Nano Lett. 8, 3750 (2008).

    Article  CAS  Google Scholar 

  10. B. Kim, J. Nguyen, P. J. Clews, C. M. Reinke, D. Goettler, Z. C. Leseman, I. El-Kady, and R. H. Olsson, in 2012 IEEE 25th Int. Conf. Micro Electro Mech. Syst. MEMS (2012), pp. 176–179.

  11. Q. Hao, G. Chen, and M.-S. Jeng, J. Appl. Phys. 106, 114321 (2009).

    Article  Google Scholar 

  12. A. M. Marconnet, T. Kodama, M. Asheghi, and K. E. Goodson, Nanoscale Microscale Thermophys. Eng. 16, 199 (2012).

    Article  CAS  Google Scholar 

  13. E. Dechaumphai and R. Chen, J. Appl. Phys. 111, 073508 (2012).

    Article  Google Scholar 

  14. P. Hyldgaard and G. D. Mahan, Phys. Rev. B 56, 10754 (1997).

    Article  CAS  Google Scholar 

  15. M. V. Simkin and G. D. Mahan, Phys. Rev. Lett. 84, 927 (2000).

    Article  CAS  Google Scholar 

  16. S.-i. Tamura, Y. Tanaka, and H. J. Maris, Phys. Rev. B 60, 2627 (1999).

    Article  CAS  Google Scholar 

  17. M. Maldovan, Phys. Rev. Lett. 110, 025902 (2013).

    Article  Google Scholar 

  18. Y. He, D. Donadio, J.-H. Lee, J. C. Grossman, and G. Galli, ACS Nano 5, 1839 (2011).

    Article  CAS  Google Scholar 

  19. Y. He and G. Galli, Phys. Rev. Lett. 108, 215901 (2012).

    Article  Google Scholar 

  20. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).

    Article  CAS  Google Scholar 

  21. J. Garg and G. Chen, Phys. Rev. B 87, 140302 (2013).

    Article  Google Scholar 

  22. L. Lu, W. Yi, and D. L. Zhang, Rev. Sci. Instrum. 72, 2996 (2001).

    Article  CAS  Google Scholar 

  23. L. Shi, Appl. Phys. Lett. 92, 206103 (2008).

    Article  Google Scholar 

  24. P. E. Hopkins and L. M. Phinney, J. Heat Transf. 131, 043201 (2009).

    Article  Google Scholar 

  25. G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford University Press, New York, 2005).

    Google Scholar 

  26. A. S. Henry and G. Chen, J. Comput. Theor. Nanosci. 5, 141 (2008).

    Article  CAS  Google Scholar 

  27. A. Ward and D. A. Broido, Phys. Rev. B 81, 085205 (2010).

    Article  Google Scholar 

  28. Q. Hao, J. Appl. Phys. 116, 034305 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Q., Xu, D. & Zhao, H. Systematic Studies of Periodically Nanoporous Si Films for Thermoelectric Applications. MRS Online Proceedings Library 1779, 27–32 (2015). https://doi.org/10.1557/opl.2015.707

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2015.707

Navigation