Skip to main content
Log in

Effect of Post-annealing on the Electrochromic Properties of Layer-by-Layer Arrangement FTO-WO3-Ag-WO3-Ag

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the current study, composites of tungsten trioxide (W03) and silver (Ag) are deposited in a layer-by-layer electrochromic (EC) arrangement onto a fluorine-doped tin oxide coated glass substrate. Tungsten oxide nanoparticles are an n-type semiconductor that can be used as EC cathode material. Nano-sized silver is a metal that can serve as an electron trap center that facilitates charge departure. In this method, the WO3 and Ag nanoparticle powder were deposited by physical vapor deposition onto the glass substrate. The fabricated electrochromic devices (ECD) were post-annealed to examine the effect of temperature on their EC properties. The morphology of the thin film was characterized by scanning electron microscopy and atomic force microscopy. Structural analysis showed that the addition of silver dopant increased the size of the aggregation of the film. The film had an average approximate roughness of about 17.8 nm. The electro-optical properties of the thin film were investigated using cyclic voltammetry and UV–visible spectroscopy to compare the effects of different post-annealing temperatures. The ECD showed that annealing at 200°C provided better conductivity (maximum current of about 90 mA in the oxidation state) and change of transmittance (ΔT = 90% at the continuous switching step) than did the other thin films. The optical band gaps of the thin film showed that it allowed direct transition at 3.85 eV. The EC properties of these combinations of coloration efficiency and response time indicate that the WO3-Ag-WO3-Ag arrangement is a promising candidate for use in such ECDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Yang, P. Sun, and W. Mai, Mater. Today 19, 394 (2016).

    Article  Google Scholar 

  2. S. Hoseinzadeh, A. Bahari, R. Ghasemiasl, and A.H. Ramezani, J. Mater. Sci. Mater. Electron. 28, 14855 (2017).

    Article  Google Scholar 

  3. S. Hoseinzadeh, A. Bahari, R. Ghasemiasl, and A.H. Ramezani, J. Mater. Sci. Mater. Electron. 28, 14446 (2017).

    Article  Google Scholar 

  4. H. Najafi-Ashtiani, A. Bahari, S. Gholipour, and S. Hoseinzadeh, Appl. Phys. A 124, 24 (2018).

    Article  Google Scholar 

  5. C.G. Granqvist, S. Green, G.A. Niklasson, N.R. Mlyuka, S. von Kræmer, and P. Georén, Thin Solid Films 518, 3046 (2010).

    Article  Google Scholar 

  6. V.R. Buch, A.K. Chawla, and S.K. Rawal, Mater. Today Proc. 3, 1429 (2016).

    Article  Google Scholar 

  7. N. Tripathi, L.D. Bell, S. Nikzad, M. Tungare, P.H. Suvarna, and F.S. Sandvik, J. Electron. Mater. 40, 382 (2011).

    Article  Google Scholar 

  8. A. Bahari and M. Shahbazi, J. Electron. Mater. 45, 1201 (2016).

    Article  Google Scholar 

  9. H. Najafi-Ashtiani, A. Bahari, and S. Ghasemi, Organ. Electron. 37, 213 (2016).

    Article  Google Scholar 

  10. P. Kumar, K.S. Narayan, S. Guha, and F. Shahedipour-Sandvik, Organ. Electron. 14, 2818 (2013).

    Article  Google Scholar 

  11. R. Gholipur, Z. Khorshidi, and A. Bahari, ACS Appl. Mater. Interfaces 9, 12528 (2017).

    Article  Google Scholar 

  12. F. Shahedipour-Sandvik and B.W. Wessels, Appl. Phys. Lett. 76, 3011 (2000).

    Article  Google Scholar 

  13. X.A. Cao, K. Topol, F. Shahedipour-Sandvik, J. Teetsov, P.M. Sandvik, S.E. LeBoeuf, A. Ebong, J.W. Kretchmer, E.B. Stokes, S. Arthur, and A.E. Kaloyeros, in Proceedings of SPIE 4776, Solid State Lighting II (2002)

  14. C.P. Cheng, Y. Kuo, C.P. Chou, C.H. Cheng, and T.P. Teng, Appl. Phys. A Mater. Sci. Process. 116, 1553 (2014).

    Article  Google Scholar 

  15. K.J. Patel, C.J. Panchal, M.S. Desai, and P.K. Mehta, Mater. Chem. Phys. 124, 884 (2010).

    Article  Google Scholar 

  16. R. Baetens, B.P. Jelle, and A. Gustavsen, Sol. Energy Mater. Sol. Cells 94, 87 (2010).

    Article  Google Scholar 

  17. Y. Guo, X. Quan, N. Lu, H. Zhao, and S. Chen, Environ. Sci. Technol. 41, 4422 (2007).

    Article  Google Scholar 

  18. I.C. Amaechi, A.C. Nwanya, P.U. Asogwa, R.U. Osuji, M. Maaza, and F.I. Ezema, J. Electron. Mater. 44, 1110 (2015).

    Article  Google Scholar 

  19. A.H. Ramezani, S. Hoseinzadeh, and A. Bahari, J. Inorg. Organomet. Polym. First Online: 02 January (2018).

  20. C.G. Granqvist, Sol. Energy Mater. Sol. Cells 99, 1 (2012).

    Article  Google Scholar 

  21. V.V. Ganbavle, J.H. Kim, and K.Y. Rajpure, J. Electron. Mater. 44, 874 (2015).

    Article  Google Scholar 

  22. S.-H. Park, S.-M. Lee, E.-H. Ko, T.-H. Kim, Y.-C. Nah, S.-J. Lee, J.H. Lee, and H.-K. Kim, Sci. Rep. 6, 33868 (2016).

    Article  Google Scholar 

  23. R.R. Kharade, S.S. Mali, S.P. Patil, K.R. Patil, M.G. Gang, P.S. Patil, J.H. Kim, and P.N. Bhosale, Electrochim. Acta 102, 358 (2013).

    Article  Google Scholar 

  24. H. Li, Y. Lv, X. Zhang, X. Wang, and X. Liu, Sol. Energy Mater. Sol. Cells 136, 86 (2015).

    Article  Google Scholar 

  25. K.W. Park, Electrochim. Acta 50, 4690 (2005).

    Article  Google Scholar 

  26. H. Huang, J. Tian, W.K. Zhang, Y.P. Gan, X.Y. Tao, X.H. Xia, and J.P. Tu, Electrochim. Acta 56, 4281 (2011).

    Article  Google Scholar 

  27. C. Feng, S. Wang, and B. Geng, Nanoscale 3, 3699 (2011).

    Google Scholar 

  28. D. Dastan, S.L. Panahi, and N.B. Chaure, J. Mater. Sci. Mater. Electron. 27, 12291 (2016).

    Article  Google Scholar 

  29. D. Dastan and A. Banpurkar, J. Mater. Sci. Mater. Electron. 28, 3851 (2016).

    Article  Google Scholar 

  30. S.B. Upadhyay, R.K. Mishra, and P.P. Sahay, Ceram. Int. 42, 15601 (2016).

    Google Scholar 

  31. M. Reghima, A. Akkari, C. Guasch, and N. Kamoun-Turki, J. Electron. Mater. 44, 4392 (2015).

    Article  Google Scholar 

  32. S. Karthika, V. Prathibha, M.K.A. Ann, V. Viji, P.R. Biju, and N.V. Unnikrishnan, J. Electron. Mater. 43, 447 (2014).

    Article  Google Scholar 

  33. V. Vidyadharan, P. Vasudevan, S. Karthika, C. Joseph, N.V. Unnikrishnan, and P.R. Biju, J. Electron. Mater. 44, 2754 (2015).

    Article  Google Scholar 

  34. H. Wei, J. Zhu, S. Wu, S. Wei, and Z. Guo, Polymer (United Kingdom) 54, 1820 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bahari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoseinzadeh, S., Ghasemiasl, R., Bahari, A. et al. Effect of Post-annealing on the Electrochromic Properties of Layer-by-Layer Arrangement FTO-WO3-Ag-WO3-Ag. J. Electron. Mater. 47, 3552–3559 (2018). https://doi.org/10.1007/s11664-018-6199-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6199-4

Keywords

Navigation