Skip to main content
Log in

Characterization and Electrical Response to Humidity of Sintered Polymeric Electrospun Fibers of Vanadium Oxide-(\({\hbox{TiO}}_{{2}} /{\hbox{WO}}_{{3}} \))

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Metal oxide composites have attracted much consideration due to their promising applications in humidity sensors in response to the physical and chemical property modifications of the resulting materials. This work focused on the preparation, microstructural characterization and analysis of humidity-dependent electrical properties of undoped and vanadium oxide (V2O5)-doped titanium oxide/tungsten oxide (TiO2/WO3) sintered ceramic films obtained by electrospinning. The electrical properties were investigated by impedance spectroscopy (400 Hz–40 MHz) as a function of relative humidity (RH). The results revealed a typical transition in the transport mechanisms controlled by the appropriated doping level of V2O5, which introduces important advantages to RH detection due to the atomic substitution of titanium by vanadium atoms in highly doped structures. These aspects are directly related to the microstructure modification and structure fabrication procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Chen and C. Lu, Sensor Lett. 3, 274 (2005).

    Article  Google Scholar 

  2. H. Farahani, R. Wagiran, and M.N. Hamidon, Sensors 14, 7881 (2014).

    Article  Google Scholar 

  3. T. Nenov and Z. Nenova, Ceram. Int. 39, 4465 (2013).

    Article  Google Scholar 

  4. P.M. Faia, J. Libardi, and C.S. Louro, Sens. Actuators B 222, 953 (2016).

    Article  Google Scholar 

  5. P.M. Faia and J. Libardi, Sens. Actuators B 236, 682 (2016).

    Article  Google Scholar 

  6. A.-M. Al-syadi, E.S. Yousef, M.M. El-Desoky, and M.S. Al-Assiri, Solid State Sci. 26, 72 (2013).

    Article  Google Scholar 

  7. J.C. Badot, A. Mantoux, N. Baffier, O. Dubrunfaut, and D. Lincotd, J. Mater. Chem. 14, 3411 (2004).

    Article  Google Scholar 

  8. E.S. Araújo, B.P. da Costa, R.A.P. Oliveira, J. Libardi, P.M. Faia, and H.P. de Oliveira, J. Environ. Chem. Eng. 4, 2820 (2016).

    Article  Google Scholar 

  9. B.S. Shirke, P.V. Korake, P.P. Hankare, S.R. Bamane, and K.M. Garadkar, J. Mater. Sci. Mater. Electron. 22, 821 (2011).

    Article  Google Scholar 

  10. K.O. Rocha and S.M. Zanetti, Sens. Actuators, B 157, 654 (2011).

    Article  Google Scholar 

  11. S. Martha, D.P. Das, N. Biswal, and K.M. Parida, J. Mater. Chem. 22, 10695 (2012).

    Article  Google Scholar 

  12. D.A.H. Hanaor and C.C. Sorrell, J. Mater. Sci. 46, 855 (2011).

    Article  Google Scholar 

  13. P.M. Faia, E.L. Jesus, and C.S. Louro, Sens. Actuators B 203, 340 (2014).

    Article  Google Scholar 

  14. K. Bhattacharyya, A.K. Patra, P.U. Sastry, and A.K. Tyagi, J. Alloys Compd. 482, 256 (2009).

    Article  Google Scholar 

  15. B. Grzybowska-Swierkosz, Appl. Catal. A 157, 263 (1997).

    Article  Google Scholar 

  16. C.B. Rodella, R.W.A. Franco, C.J. Magon, J.P. Donoso, and L.A.O. Nunes, J. Sol-Gel. Sci. Technol. 25, 75 (2002).

    Article  Google Scholar 

  17. V.A. Fonoberov and A.A. Balandin, Phys. Rev. B 70, 233205 (2004).

    Article  Google Scholar 

  18. G.R. Hearne, J. Zhao, A.M. Dawe, V. Pischedda, M. Maaza, M.K. Nieuwoudt, P. Kibasomba, O. Nemraoui, J.D. Comins, and M.J. Witcomb, Phys. Rev. B 70, 134102 (2004).

    Article  Google Scholar 

  19. S. Sahoo, A.K. Arora, and V. Sridharan, J. Phys. Chem. C 113, 16927 (2009).

    Article  Google Scholar 

  20. M. Horprathum, P. Eiamchai, P. Chindaudom, A. Pokaipisitb, and P. Limsuwan, Procedia Eng. 32, 676 (2012).

    Article  Google Scholar 

  21. M. Landmann, E. Rauls, and W.G. Schmidt, J. Phys. Condens. Matter 24, 195503 (2012).

    Article  Google Scholar 

  22. C.C. Yang and S. Li, J. Phys. Chem. B 112, 14193 (2008).

    Article  Google Scholar 

  23. F. Liu, X. Chen, Q. Xia, L. Tian, and X. Chen, RSC Adv. 5, 77423 (2015).

    Article  Google Scholar 

  24. D. Susanti, A.A.G.P. Diputra, L. Tananta, H. Purwaningsih, G.E. Kusuma, C. Wang, S. Shih, and Y. Huang, Front. Chem. Sci. Eng. 8, 179 (2014).

    Article  Google Scholar 

  25. Y. Chen, G. Yang, Z. Zhang, X. Yang, W. Hou, and Jun-Jie Zhu, Nanoscale 10, 2131 (2010).

    Article  Google Scholar 

  26. Y. Hu, Z. Li, Z. Zhang, and D. Meng, Appl. Phys. Lett. 94, 103107 (2009).

    Article  Google Scholar 

  27. H. Yin, K. Yu, H. Peng, Z. Zhang, R. Huang, J. Travas-Sejdic, and Z. Zhu, J. Mater. Chem. 22, 5013 (2012).

    Article  Google Scholar 

  28. J.Y. Kim, J.H. Yang, J.H. Lee, G. Choi, D.H. Park, M.R. Jo, S.J. Choi, and J.H. Choy, Chem. Asian J. 10, 2264 (2015).

    Article  Google Scholar 

  29. F.F.P. da Costa, E.S. Araújo, M.L.F. Nascimento, and H.P. de Oliveira, Int. J. Polym. Sci. 2015, 902365 (2015).

    Article  Google Scholar 

  30. S.H. Othman, S.A. Rashid, T.I.M. Ghazi, and N. Abdullah, J. Nanomater. 2012, 718214 (2012).

    Article  Google Scholar 

  31. Y. Guo, D. He, S. Xia, X. Xie, X. Gao, and Q. Zhang, J. Nanomater. 2012, 202794 (2012).

    Article  Google Scholar 

  32. S. Ghosh, S.S. Acharyya, M. Kumar, and R. Bal, Nanoscale 7, 15197 (2015).

    Article  Google Scholar 

  33. L.G. Teoha, J. Shiehb, W.H. Laia, I.M. Hunga, and M.H. Hon, J. Alloys Compd. 396, 251 (2005).

    Article  Google Scholar 

  34. I.M.F. Daniel, B. Desbat, J.C. Lassegues, B. Gerand, and M. Figlaz, J. Solid-State Chem. 67, 235 (1987).

    Article  Google Scholar 

  35. L.H.M. Krings and W. Talen, Sol. Energy Mater. Sol. Cells 54, 27 (1998).

    Article  Google Scholar 

  36. V. Dimitrov, Y. Dimitriev, and A. Montenero, J. Non-Cryst. Solids 180, 51 (1994).

    Article  Google Scholar 

  37. T. Ivanova, A. Harizanova, and M. Surtchev, Mater. Lett. 55, 327 (2002).

    Article  Google Scholar 

  38. N. Kerkouria, M. Haddadb, M. Et-tabiroua, A. Chahinea, and L. Laânab, Physica B Condens. Matter 406, 3142 (2011).

    Article  Google Scholar 

  39. J. Ryczkowski, Catal. Today 68, 263 (2001).

    Article  Google Scholar 

  40. J.H. Anderson and G.A. Parks, J. Phys. Chem. 72, 3362 (1968).

    Article  Google Scholar 

  41. J.J. Fripiat, A. Jelli, G. Poncelet, and J. André, J. Phys. Chem. 69, 2185 (1965).

    Article  Google Scholar 

  42. W.M. Sears, Sens. Actuators B 67, 161 (2000).

    Article  Google Scholar 

  43. M.G. Baldwin and J.C. Morrow, J. Chem. Phys. 36, 1591 (1962).

    Article  Google Scholar 

  44. K.S. Cole and R.H. Cole, J. Chem. Phys. 9, 341 (1941).

    Article  Google Scholar 

  45. T. Morimoto, M. Nagao, and F. Tokuda, J. Phys. Chem. 73, 243 (1969).

    Article  Google Scholar 

  46. T. Morimoto and T. Iwaki, J. Chem. Soc. Faraday Trans. 1, 943 (1987).

    Article  Google Scholar 

  47. P.M. Faia and C.S. Furtado, Sens. Actuators B 181, 720 (2013).

    Article  Google Scholar 

  48. J. Holc, J. Slunčko, and M. Hrovat, Sens. Actuators, B 26–27, 99 (1995).

    Article  Google Scholar 

  49. M. Bayhan and N. Kavasoğlu, Sens. Actuators B 117, 261 (2006).

    Article  Google Scholar 

  50. G. Montesperelli, A. Pumo, E. Traversa, G. Gusmano, A. Bearzotti, A. Montenero, and G. Gnappi, Sens. Actuators B 25, 705 (1995).

    Article  Google Scholar 

  51. Vent-Axia, Ecotronic humidity sensors. http://www.vent-axia.com/product/ecotronic-humidity-sensor.html-1. Accessed 30 July 2017.

  52. TDK Electronics Eurpe, Humidity Sensor CHS Series. http://pdf.directindustry.com/pdf/tdk-electronics-europe/humidity-sensor-chs-series/34778-654990.html. Accessed 30 July 2017.

  53. C.Y. Lu, S.-P. Chang, S.J. Chang, T.J. Hsueh, C.L. Hsu, Y.Z. Chiou, and I.C. Chen, IEEE Sens. J. 9, 485 (2009).

    Article  Google Scholar 

  54. S. Niu, Y. Hu, X. Wen, Y. Zhou, F. Zhang, L. Lin, S. Wang, and Z.L. Wang, Adv. Mater. 25, 3701 (2013).

    Article  Google Scholar 

  55. T. Miyake and M. Rolandi, J. Phys. Condens. Matter 28, 023001 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by FEDER funds, FCT funds - project UID/EMS/00285/2013, CNPq - projects (202451/2015-1) and (248958/2013-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Araújo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araújo, E.S., Libardi, J., Faia, P.M. et al. Characterization and Electrical Response to Humidity of Sintered Polymeric Electrospun Fibers of Vanadium Oxide-(\({\hbox{TiO}}_{{2}} /{\hbox{WO}}_{{3}} \)). J. Electron. Mater. 47, 2710–2717 (2018). https://doi.org/10.1007/s11664-018-6112-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6112-1

Keywords

Navigation