Skip to main content
Log in

Humidity-sensing properties of hierarchical TiO2:ZnO composite grown on electrospun fibers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The performance of metal oxide-based devices for humidity impedimetric sensors depends on different conduction mechanisms during water molecules adsorption. As consequence, new strategies for development of hierarchical and doped structures of mixed metal oxides play a critical role in the production of more efficient humidity sensors. It is reported an alternative method for synthesis of hexagonal ZnO nanocrystals on TiO2-decorated electrospun fibers, allowing the production of ordered arrays of hierarchical TiO2/ZnO nanostructures. Polymeric matrix supporting fibers were removed after annealing (500 °C), providing nanostructures with promising application as low-cost humidity sensors. The structure of resulting materials was explored in addition to the influence of relative humidity (RH) (measured in the range 400 Hz–40 MHz) on complex impedance spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Ziarati, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, J. Rare Earths 35(4), 374 (2017)

    Article  Google Scholar 

  2. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, J. Mater. Sci. 27, 11691 (2016)

    Google Scholar 

  3. M. Ramezani, A. Sobhani-Nasab, A. Davoodi, J. Mater. Sci. 26, 5440 (2015)

    Google Scholar 

  4. A. S. Nasab, H. Naderi, M. Rahimi-Nasrabadi, M. R. Ganjali, J. Mater. Sci. 28, 8588 (2017)

    Google Scholar 

  5. H. Farahani, R. Wagiran, M.N. Hamidon, Sensors 14, 7881 (2014)

    Article  Google Scholar 

  6. E. Traversa, G. Gnappi, A. Montenero, G. Gusmano, Sens. Actuators B 31, 59 (1996)

    Article  Google Scholar 

  7. Y. Xue-Jun, H. Tian-Sheng, X. Xing, L. Zhen, Chin. Phys. Lett. 28, 090701 (2011)

    Article  Google Scholar 

  8. L. Gu, K. Zheng, Y. Zhou, J. Li, X. Mo, G.R. Patzke, G. Chen, Sens. Actuators B 159, 1 (2011)

    Article  Google Scholar 

  9. P.M. Faia, C.S. Furtado, Sens. Actuators B 181, 720 (2013)

    Article  Google Scholar 

  10. R. Srivastava, B. C. Yadav, Adv. Mater. Lett. 3(3), 197 (2012)

    Article  Google Scholar 

  11. Y. Xue-Jun, H. Tian-Sheng, X. Xing, L. Zhen, Chin. Phys. Lett. 28(9) (2011)

  12. E.S. Araújo, J. Libardi, P.M. Faia, H.P. Oliveira, J. Chem. 2015, 476472 (2015)

    Article  Google Scholar 

  13. E.S. Araújo, M.L.F. Nascimento, H.P. Oliveira, Fibres Text. East. Eur. 21, 39 (2013)

    Google Scholar 

  14. H.R. Jafry, M.V. Liga, Q. Li, A.R. Barron, New J. Chem. 35, 400 (2011)

    Article  Google Scholar 

  15. D.J. Sornalatha, P. Murugakoothan, Mater. Lett. 124, 219 (2014)

    Article  Google Scholar 

  16. R. Udayabhaskar, B. Karthikeyan, J. Am. Ceram. Soc. 98, 1807 (2015)

    Article  Google Scholar 

  17. V.A. Fonoberov, A.A. Balandin, Phys. Rev. B 70, 1 (2014)

    Google Scholar 

  18. G.R. Hearne, J. Zhao, A.M. Dawe, V. Pischedda, M. Maaza, M.K. Nieuwoudt, P. Kibasomba, O. Nemraoui, J.D. Comins, M.J. Witcomb, Phys. Rev. B 70, 134102 (2004)

    Article  Google Scholar 

  19. S. Sahoo, A.K. Arora, V. Sridharan, J. Phys. Chem. C 113, 16927 (2009)

    Article  Google Scholar 

  20. T. Ohsaka, F. Izumi, Y. Fujiki, J. Raman Spectrosc. 7, 321 (1978)

    Article  Google Scholar 

  21. M. Horprathum, P. Eiamchai, P. Chindaudom, A. Pokaipisitb, P. Limsuwan, Procedia Eng. 32, 676 (2012)

    Article  Google Scholar 

  22. M. Landmann, E. Rauls, W.G. Schmidt, J. Phys. Condens. Matter 24, 195503 (2012)

    Article  Google Scholar 

  23. K.A. Alim, V.A. Fonoberov, M. Shamsa, A.A. Balandin, ‎J. Appl. Phys. 97, 124313 (2005)

    Article  Google Scholar 

  24. V.A. Fonoberov, A.A. Balandin, J. Phys. Condens. Matter 17, 1085 (2005)

    Article  Google Scholar 

  25. M. Marie, S. Mandal, O. Manasreh, Sensors 15, 18714 (2015)

    Article  Google Scholar 

  26. S. Zhang, B. Yin, H. Jiang, F. Qu, A. Umar, X. Wu, Dalton Trans. 44, 2409 (2015)

    Article  Google Scholar 

  27. C.C. Yang, S. Li, J. Phys. Chem. B 112, 14193 (2008)

    Article  Google Scholar 

  28. I. Bobowska, A. Opasińska, A. Wypych, P. Wojciechowski, ‎Mater. Chem. Phys. 34, 87 (2012)

    Article  Google Scholar 

  29. T.M.M. Santos, P.H. Oliveira Jr., L.A.A. Ribeiro, H.P. Oliveira, Asian J. Biochem. Pharm. Res. 4, 63 (2014)

    Google Scholar 

  30. J.Y. Kim, J.H. Yang, J.H. Lee, G. Choi, D.H. Park, M. Jo, S.J. Choi, J.H. Choy, Chem. Asian J. 10, 2264 (2015)

    Article  Google Scholar 

  31. F.F.P. da Costa, E.S. Araújo, M.L.F. Nascimento, H.P. Oliveira, Int. J. Polym. Sci. 2015, 902365 (2015)

    Article  Google Scholar 

  32. M. Bharathi, S.C. Prasad, R.L. Eswari, S.W. Raja, R.T. Allena, S.B. Raj, K.B. Reddy, Pharm. Sin. 3, 516 (2012)

    Google Scholar 

  33. A. Anzlovar, Z.C. Orel, K. Kogej, M. Zigon, J. Nanomater. 2012, 760872 (2012)

    Article  Google Scholar 

  34. T. Nitta, S. Hayakawa, IEEE Trans. Compon. Hybrids Manuf. Technol. 3, 237 (1980)

    Article  Google Scholar 

  35. G. Korotcenkov, Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications, 1st edn., vol. 1 (Springer, New York, 2013)

    Book  Google Scholar 

  36. L. Znaidi, G.J.A.A. SolerIllia, S. Benyahia, C. Sanchez, A.V. Kanaev, Thin Solid Films 428, 257 (2003)

    Article  Google Scholar 

  37. C. Cheng, A. Amini, C. Zhu, Z. Xu, H. Song, N. Wang, Sci. Rep. 4, 4181 (2014)

    Article  Google Scholar 

  38. S.H. Othman, S.A. Rashid, T.I.M. Ghazi, N. Abdullah, J. Nanomater. 2012, 718214 (2012)

    Article  Google Scholar 

  39. Y. Guo, D. He, S. Xia, X. Xie, X. Gao, Q. Zhang, J. Nanomater. 2012, 202794 (2012)

    Article  Google Scholar 

  40. J.H. Anderson, G.A. Parks, J. Phys. Chem. 72, 3362 (1968)

    Article  Google Scholar 

  41. J.J. Fripiat, A. Jelli, G. Poncelet, J. André, J. Phys. Chem. 69, 2185 (1965)

    Article  Google Scholar 

  42. M.G. Baldwin, J.C. Morrow, J. Chem. Phys. 36, 1591 (1962)

    Article  Google Scholar 

  43. D. Grotthuss, Ann. Chim. 58, 54 (1806)

    Google Scholar 

Download references

Acknowledgements

This research is sponsored by FEDER funds, through the program COMPETE - Programa Operacional Factores de Competitividade -, and by national funds, through FCT - Fundação para a Ciência e a Tecnologia -, under the project UID/EMS/00285/2013. The authors also acknowledge the financial support from CNPq – Projects (202451/2015-1) and (248958/2013-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helinando P. de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araújo, E.S., Libardi, J., Faia, P.M. et al. Humidity-sensing properties of hierarchical TiO2:ZnO composite grown on electrospun fibers. J Mater Sci: Mater Electron 28, 16575–16583 (2017). https://doi.org/10.1007/s10854-017-7571-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7571-5

Navigation