Skip to main content

Advertisement

Log in

Thermal Harvesting Potential of the Human Body

  • Topical Collection: International Conference on Thermoelectrics 2017
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermoelectric energy harvesting of human body heat might supplement or even replace conventional energy storage in wearable devices for healthcare and the Internet of Humans. Although a number of thermal harvesters are presented in the literature, no conclusive data can be found on the amount of available thermal energy provided by different individuals and activities. We here present the results of an observational study with 56 test subjects of different ages (children, adults and elderly) and gender, performing predefined activities (sitting, walking) in varying environments (indoor, outdoor). Our study showed a statistical difference of thermal potential and skin properties between age groups, but not between genders. On average, stationary elderly test subjects produced ∼ 32% less heat flux compared to minors (mean: children = 13.9 mW/cm2, adults = 11.4 mW/cm2, elderly =  9.4 mW/cm2). This potentially correlates with an increase in thermal skin resistance with age (children = 494 cm2 K/W, adults = 549 cm2 K/W, elderly = 835 cm2 K/W). The mean harvested power varied from 12.2 μW/cm2 (elderly) to 26.2 μW/cm2 (children) for stationary, and from 20.2 μW/cm2 (elderly) to 69.5 μW/cm2 (children) for active subjects inside of a building. The findings of this study can be used to better anticipate the available energy for different usage scenarios of thermal harvesters and optimize wearable systems accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Han, H. Han, A.M. Reichmuth, A.F. Renz, F. Stauffer, M. Thielen, and J. Voros, Int. J. Autom. Smart Technol. 7, 37 (2017).

    Article  Google Scholar 

  2. J.A.A. Paradiso and T. Starner, IEEE Pervasive Comput. 4, 18 (2005).

    Article  Google Scholar 

  3. T. Torfs, V. Leonov, and R.J.M.M. Vullers, Sens. Transducers J. 80, 1230 (2007).

    Google Scholar 

  4. V. Leonov, Wearable Monitoring Systems, ed. A. Bonfiglio and D. De Rossi (Boston: Springer, 2011), pp. 27–49.

    Chapter  Google Scholar 

  5. M. Van Bavel, V. Leonov, R.F. Yazicioglu, T. Torfs, C. Van Hoof, N.E. Posthuma, and R.J.M.M. Vullers, Sens. Transducers J. 94, 103 (2008).

    Google Scholar 

  6. M. Thielen, L. Sigrist, M. Magno, C. Hierold, and L. Benini, Energy Conversat. Manag. 131, 44 (2017).

    Article  Google Scholar 

  7. N. Charkoudian, Mayo Clin. Proc. 78, 603 (2003).

    Article  Google Scholar 

  8. T. Starner, IBM Syst. J. 35, 618 (1996).

    Article  Google Scholar 

  9. V. Leonov, IEEE Sens. J. 13, 2284 (2013).

    Article  Google Scholar 

  10. RMT Ltd., 1MC04-070-XX Datasheet, (2014).

  11. Fischer Elektronik ICK 24 B Datasheet, (2014)

  12. Y. Apertet, H. Ouerdane, O. Glavatskaya, C. Goupil, and P. Lecoeur, Europhys. Lett. 97, 28001 (2012).

    Article  Google Scholar 

  13. J.S. Hutchison, R.E. Ward, J. Lacroix, P.C. Hébert, M.A. Barnes, D.J. Bohn, P.B. Dirks, S. Doucette, D. Fergusson, R. Gottesman, A.R. Joffe, H.M. Kirpalani, P.G. Meyer, K.P. Morris, D. Moher, R.N. Singh, P.W. Skippen, and N. Engl, J. Med. 358, 2447 (2008).

    Google Scholar 

  14. D. Nelson and S. Nunneley, Eur. J. Appl. Physiol. 78, 353 (1998).

    Article  Google Scholar 

  15. E. Arens and H. Zhang, Thermal and Moisture Transport in Fibrous Materials, ed. N. Pan and P. Gibson (Cambridge, UK: Woodhead Publishing Limited, 2006).

  16. M. Weiss, B. Milman, B. Rosen, Z. Eisenstein, and R. Zimlichman, Age Ageing 21, 237 (1992).

    Article  Google Scholar 

  17. S. Akazaki, H. Nakagawa, H. Kazama, O. Osanai, M. Kawai, Y. Takema, and G. Imokawa, Br. J. Dermatol. 147, 689 (2002).

    Article  Google Scholar 

  18. H.S. Ryu, Y.H. Joo, S.O. Kim, K.C. Park, and S.W. Youn, Ski Res. Technol. 14, 354 (2008).

    Article  Google Scholar 

  19. R.O. Potts, E.M. Buras, and D.A. Chrisman, J. Invest. Dermatol. 82, 97 (1984).

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank all participants of the user study and in particular the Letzikids from FC Zürich. We further thank Anne Ziegler for programming advice, Manuela Kägi for the help on participant acquisition and Dr.med. Gabriele Wohlrab and Dr.med. Bigna Bölsterli from Kinderspital Zürich for medical advice and help on the ethics proposal. This work is part of the BodyPoweredSense project and is evaluated by the Swiss National Science Foundation and funded by Nano-Tera.ch with Swiss Confederation financing. This study with the title “Investigation into the thermal energy harvesting capability of harvesters applied to the forehead of elderly people and children” was approved by the Research Ethics Committee of ETH Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Thielen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1644 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thielen, M., Kara, G., Unkovic, I. et al. Thermal Harvesting Potential of the Human Body. J. Electron. Mater. 47, 3307–3313 (2018). https://doi.org/10.1007/s11664-018-6095-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6095-y

Keywords

Navigation