Skip to main content

Advertisement

Log in

Materials and approaches for on-body energy harvesting

  • Materials for Energy Harvesting
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The human body is a challenging platform for energy harvesting. For thermoelectrics, the small temperature differences between the skin and air necessitate materials with low thermal conductivities in order to maintain useful output powers. For kinetic harvesting, human motion is not strongly tonal, the frequencies are very low, and the accelerations are modest. Kinetic harvesting can be split into two categories—inertial, in which human motion excites an inertial mass–the motion of which is transduced to electricity, and clothing integrated, in which the harvesting material is integrated with a garment or other flexible wearable system. In the first case, key issues are the electromechanical dynamics of the system and materials with improved electromechanical transduction figures of merit. In the second case, materials that provide flexibility, stretchability, and comfort are of primary importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. V. Misra, A. Bozkurt, B. Calhoun, T. Jackson, J.S. Jur, J. Lach, B. Lee, J. Muth, J.Ö Oralkan, M. Öztürk, S. Trolier-McKinstry, Proc. IEEE 103, 665 (2015).

    Google Scholar 

  2. L.M. Castano, A.B. Flatau, Smart Mater. Struct. 23, 053001 (2014).

    Google Scholar 

  3. T. Starner, J. Paradiso, in Low-Power Electronics, C. Piguet, Ed. (CRC Press, Boca Raton, FL, 2004), pp. 45-1–45-32.

    Google Scholar 

  4. P. Pillatsch, E.M. Yeatman, A.S. Holmes, Sens. Actuators A 206, 178 (2014).

    Google Scholar 

  5. M. Renaud, P. Fiorini, R. van Schaijk, C. van Hoof, Smart Mater. Struct. 21, 49501 (2012).

    Google Scholar 

  6. R. Rantz, T. Xue, Q. Zhang, L. Gu, K. Yang, S. Roundy, J. Phys. Conf. Ser. 773, 12076 (2016).

    Google Scholar 

  7. I. Stark, presented at the Wireless Health 2012 Conference, San Diego, October 23–25, 2012, pp. 3 – 4.

  8. F. Suarez, A. Nozariasbmarz, D. Vashaee, M.C. Öztürk, Energy Environ. Sci. 9, 2099 (2016).

    Google Scholar 

  9. A.R.M. Siddique, R. Rabari, S. Mahmud, B. Van Heyst, Energy 115, 1081 (2016).

    Google Scholar 

  10. J.A. Paradiso, T. Starner, IEEE Pervasive Comput. 4, 18 (2005).

    Google Scholar 

  11. A. Bramhanand, M. Rahman, Y. Bae, H. Kim, Solid-State Sensors, Actuators, and Microsystems Workshop (Hilton Head, SC, June 3–7, 2012), p. 497.

    Google Scholar 

  12. T. Krupenkin, J.A. Taylor, Nat. Commun. 2, 448 (2011).

    Google Scholar 

  13. V. Leonov, R.J.M. Vullers, J. Electron. Mater. 38, 1491 (2009).

    Google Scholar 

  14. V. Leonov, IEEE Sens. J. 13, 2284 (2013).

    Google Scholar 

  15. V. Leonov, R.J.M. Vullers, J. Renew. Sustain. Energy 1, 62701 (2009).

    Google Scholar 

  16. M.-K. Kim, M.-S. Kim, S. Lee, C. Kim, Y.-J. Kim, Smart Mater. Struct. 23, 105002 (2014).

    Google Scholar 

  17. S.J. Kim, J.H. We, B.J. Cho, Energy Environ. Sci. 7, 1959 (2014).

    Google Scholar 

  18. C. Wan, R. Tian, A.B. Azizi, Y. Huang, O. Wei, R. Sasai, S. Wasusate, T. Ishida, K. Koumoto, Nano Energy 30, 840 (2016).

    Google Scholar 

  19. J.-H. Bahk, H. Fang, K. Yazawa, A. Shakouri, J. Mater. Chem. C 3, 10362 (2015).

    Google Scholar 

  20. M. Hyland, H. Hunter, J. Liu, E. Veety, D. Vashaee, Appl. Energy 182, 518 (2016).

    Google Scholar 

  21. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, Science 320, 634 (2008).

    Google Scholar 

  22. F. Suarez, D.P. Parekh, C. Ladd, D. Vashaee, M.D. Dickey, M.C. Öztürk, Appl. Energy 202, 736 (2017).

    Google Scholar 

  23. Y. Sargolzaeiaval, T. Neumann, F. Suarez, V.P. Ramesh, D.P. Parekh, D. Vashaee, M. Dickey, M.C. Öztürk, “Flexible Thermoelectric Energy Harvesters Using Bulk Thermoelectric Legs and Low-Resistivity, Stretchable Liquid Metal Interconnects,” presented at the International Conference on Thermoelectrics, ICT 2017, Pasadena, CA, July 28–August 3, 2017.

  24. M. El-hami, P. Glynne-Jones, N.M. White, M. Hill, S. Beeby, A.D. Brown, J.N. Ross, Sens. Actuators A 92, 335 (2001).

    Google Scholar 

  25. P.D. Mitcheson, T.C. Green, E.M. Yeatman, A.S. Holmes, J. Microelectromech. Syst. 13, 1 (2004).

    Google Scholar 

  26. S. Roundy, P.K. Wright, Smart Mater. Struct. 13, 1131 (2004).

    Google Scholar 

  27. E.M. Yeatman, J. Mech. Eng. Sci. 222, 27 (2008).

    Google Scholar 

  28. M. Hayakawa, “Electronic Wristwatch with Generator,” US Patent 5,001,685 (1989).

  29. M. Lossec, B. Multon, H. Ben Ahmed, MELECON 2010—2010 15th IEEE Mediterr. Electrotech. Conf. (2010), pp. 1516 – 1521.

  30. E. Romero, M.R. Neuman, R.O. Warrington, 2011 IEEE 24th Int. Conf. Micro Electro Mech. Syst. (2011), p. 1325.

  31. J. Nakano, K. Komori, Y. Hattori, Y. Suzuki, J. Phys. Conf. Ser. 660, 12052 (2015).

    Google Scholar 

  32. T. Xue, H.G. Yeo, S. Trolier-McKinstry, S. Roundy, Transducers’17 (Kaohsiung, Taiwan, 2017), pp. 375 – 378.

    Google Scholar 

  33. M.A. Halim, R. Rantz, Q. Zhang, L. Gu, K. Yang, S. Roundy, Transducers’17 (Kaohsiung, Taiwan, 2017), pp. 1863 – 1866.

  34. R. Lockhart, P. Janphuang, D. Briand, N.F. de Rooij, 2014 IEEE 27th Int. Conf. Micro Electro Mech. Syst. (2014), pp. 370 – 373.

  35. M.A. Halim, J.Y. Park, Sens. Actuators A 229, 50 (2015).

    Google Scholar 

  36. M. Geisler, S. Boisseau, P. Gasnier, J. Willemin, C. Gobbo, G. Despesse, I. Ait-Ali, S. Perraud, Smart Mater. Struct. 26, 105035 (2017).

    Google Scholar 

  37. A. Haroun, I. Yamada, S. Warisawa, Sens. Actuators A 224, 87 (2015).

    Google Scholar 

  38. T.A. Shastry, M. Geier, A. Smith, “Kinetic Energy Harvesting Methods and Apparatus,” US Patent US20160020682 A1 (2015).

  39. M. Geisler, S. Boisseau, M. Perez, I. Ait-Ali, S. Perraud, J. Phys. Conf. Ser. 773, 012044 (2016).

    Google Scholar 

  40. Y. Rao, S. Cheng, D.P. Arnold, J. Micromech. Microeng. 23, 114012 (2013).

    Google Scholar 

  41. Y. Rao, K.M. McEachern, D.P. Arnold, J. Phys. Conf. Ser. 476, 012011 (2013).

    Google Scholar 

  42. P.D. Mitcheson, E.M. Yeatman, G.K. Rao, A.S. Holmes, T.C. Green, Proc. IEEE 96, 1457 (2008).

    Google Scholar 

  43. T. Xue, X. Ma, C. Rahn, S. Roundy, J. Phys. Conf. Ser. 557, 12090 (2014).

    Google Scholar 

  44. H. Kim, Y. Tadesse, S. Priya, Energy Harvesting Technologies, S. Priya, D. Inman, Eds. (Springer Science and Business Media, New York, 2009), pp. 3– 39.

    Google Scholar 

  45. C.B. Yeager, S. Trolier-McKinstry, J. Appl. Phys. 112, 74107 (2012).

    Google Scholar 

  46. Y.B. Jeon, R. Sood, J.-H. Jeong, S.-G. Kim, Sens. Actuators A 122, 16 (2005).

    Google Scholar 

  47. C.B. Yeager, E. Yoshitaka, N. Oshima, H. Funakubo, S. Trolier-McKinstry, J. Appl. Phys. 116, 104907 (2014).

    Google Scholar 

  48. S. Trolier-McKinstry, F. Griggio, C. Yaeger, P. Jousse, D. Zhao, S.S.N. Bharadwaja, T.N. Jackson, S. Jesse, S.V. Kalinin, K. Wasa, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1782 (2011).

    Google Scholar 

  49. C.B. Yeager, “PZT Thin Films for Piezoelectric MEMS Mechanical Energy Harvesting,” PhD thesis, The Pennsylvania State University, University Park, PA (2015).

  50. S.S. Won, J. Lee, V. Venugopal, D. Kim, J. Lee, I.W. Kim, A.I. Kingon, S. Kim, Appl. Phys. Lett. 108, 232908 (2016).

    Google Scholar 

  51. F. Calame, P. Muralt, Appl. Phys. Lett. 90, 0629097 (2007).

    Google Scholar 

  52. I.G. Mina, H. Kim, I. Kim, S.K. Park, K. Choi, T.N. Jackson, R.L. Tutwiler, S. Trolier-McKinstry, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2422 (2007).

    Google Scholar 

  53. M. Akiyama, K. Umeda, A. Honda, T. Nagase, Appl. Phys. Lett. 102, 021915 (2013).

    Google Scholar 

  54. R. Matloub, M. Hadad, A. Mazzalai, N. Chidambaram, G. Moulard, C.S. Sandu, T. Metzger, P. Muralt, Appl. Phys. Lett. 102, 152903 (2013).

    Google Scholar 

  55. K. Ujimoto, T. Yoshimura, A. Ashida, N. Fujimura, Appl. Phys. Lett. 100, 102901 (2012).

    Google Scholar 

  56. K.A. Cook-Chennault, N. Thambi, A.M. Sastry, Smart Mater. Struct. 17, 041003 (2008).

    Google Scholar 

  57. F.-R. Fan, Z.-Q. Tian, Z. Lin Wang, Nano Energy 1, 328 (2012).

    Google Scholar 

  58. Y. Cheng, X. Lu, K. Hoe Chan, R. Wang, Z. Cao, J. Sun, G. Wei Ho, Nano Energy 41, 511 (2017).

    Google Scholar 

  59. B. Yang, K.S. Yun, Sens. Actuators A 188, 427 (2012).

    Google Scholar 

  60. G. De Pasquale, S.-G. Kim, D. De Pasquale, IEEE/ASME Trans. Mechatron. 21, 565 (2015).

    Google Scholar 

  61. M. Lee, C.Y. Chen, S. Wang, S.N. Cha, Y.J. Park, J.M. Kim, L.J. Chou, Z.L. Wang, Adv. Mater. 24, 1759 (2012).

    Google Scholar 

  62. A. Almusallam, Z. Luo, A. Komolafe, K. Yang, A. Robinson, R. Torah, S. Beeby, Nano Energy 33, 146 (2017).

    Google Scholar 

  63. S.S. Kwak, H. Kim, W. Seung, J. Kim, R. Hinchet, S.-W. Kim, ACS Nano 11, 10733 (2017).

    Google Scholar 

  64. X. Pu, L. Li, H. Song, C. Du, Z. Zhao, C. Jiang, G. Cao, W. Hu, Z.L. Wang, Adv. Mater. 27, 2472 (2015).

    Google Scholar 

  65. W. Seung, M.K. Gupta, K.Y. Lee, K.S. Shin, J.H. Lee, T.Y. Kim, S. Kim, J. Lin, J.H. Kim, S.W. Kim, ACS Nano 9, 3501 (2015).

    Google Scholar 

  66. B. Padasdao, E. Shahhaidar, C. Stickley, O. Boric-Lubecke, IEEE Sens. J. 13, 4204 (2013).

    Google Scholar 

  67. D. Yun, K.S. Yun, Electron. Lett. 49, 65 (2013).

    Google Scholar 

  68. Y. Eun, D.-S. Kwon, M.-O. Kim, I. Yoo, J. Sim, H.-J. Ko, K.-H. Cho, J. Kim, Smart Mater. Struct. 23, 45040 (2014).

    Google Scholar 

  69. W. Wu, S. Bai, M. Yuan, Y. Qin, Z.L. Wang, T. Jing, ACS Nano 6, 6231 (2012).

    Google Scholar 

  70. M. Kim, K.-S. Yun, Micromachines 8, 115 (2017).

    Google Scholar 

  71. R. Riemer, A. Shapiro, J. Neuroeng. Rehabil. 8, 22 (2011).

    Google Scholar 

  72. E. Shahhaidar, B. Padasdao, R. Romine, C. Stickley, O. Boric-Lubecke, Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS (2013), pp. 3439 – 3442.

  73. Y. Song, J. Zhang, H. Guo, X. Chen, Z. Su, H. Chen, X. Cheng, H. Zhang, Appl. Phys. Lett. 111, 1 (2017).

    Google Scholar 

  74. C. Liu, J. Li, L. Che, S. Chen, Z. Wang, X. Zhou, Nano Energy 41, 359 (2017).

    Google Scholar 

  75. G.T. Davis, Polymers for Electronic and Photonic Applications, C.P. Wong, Ed. (Academic Press, San Diego, 1993), pp. 435 – 461.

    Google Scholar 

  76. S.S. Won, M. Sheldon, N. Mostovych, J. Kwak, B. Chang, C.W. Ahn, A.I. Kingon, I.W. Kim, S. Kim, S.S. Won, M. Sheldon, N. Mostovych, J. Kwak, Appl. Phys. Lett. 107, 202901 (2015).

    Google Scholar 

  77. H.G. Yeo, S. Trolier-McKinstry, J. Appl. Phys. 116, 014105 (2014).

    Google Scholar 

  78. T. Liu, M. Wallace, S. Trolier-McKinstry, T.N. Jackson, J. Appl. Phys. 122, 164103 (2017).

    Google Scholar 

  79. Y. Qi, N.T. Jafferis, K. Lyons, C.M. Lee, H. Ahmad, M.C. McAlpine, Nano Lett. 10, 524 (2010).

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Science Foundation (NSF) ASSIST Nano-systems ERC under Award No. EEC-1160483. S.T.M. also acknowledges NSF Award No. CNS-1646399.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shad Roundy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roundy, S., Trolier-McKinstry, S. Materials and approaches for on-body energy harvesting. MRS Bulletin 43, 206–213 (2018). https://doi.org/10.1557/mrs.2018.33

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.33

Navigation