Skip to main content
Log in

First Principles Study of Structural Stability, Elastic Properties, and Electronic Structures of Y-Doped Mg2Si

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The occupancy, structural stability, elastic properties, and electronic structure of Y-doped Mg2Si were calculated by the first principles method based on density functional theory. Calculation of the formation heats and mechanical stability show that Mg2Si, and Mg7Si4Y can be stable, while Mg8Si3Y and Mg8Si4Y cannot exist stably in the system. The heats of formation and cohesive energies calculations show that the structural stability and alloying ability of Mg7Si4Y is better than that of Mg2Si. The bulk modulus (B), shear modulus (G), Young’s modulus (E), and Poisson’s ratio (ν) show that Mg2Si is a brittle phase and Mg7Si4Y is a ductile phase. Doping with Y can improve the ductility of Mg2Si. The density of states, population analysis, and electron density difference show that the ionicity of Mg7Si4Y is stronger than that of Mg8Si4, and the Y-Si ionic bonds formed by Mg7Si4Y increase the structural stability. The band structure analysis shows that the Fermi level of Mg7Si4Y is in the conduction band, the electrons in the valence band can easily transition to the conduction band, and that the conductivity of Mg7Si4Y is stronger than Mg2Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kato, Y. Sago, and H. Fujiwara, J. Appl. Phys. 110, 84 (2011).

    Google Scholar 

  2. H. Udono, Y. Yamanaka, M. Uchikoshi, and M. Isshiki, J. Phys. Chem. Solids 74, 311 (2013).

    Article  Google Scholar 

  3. D. Fang, Q.Q. Xiao, Y.F. Liao, Z.B. Yuan, S.L. Wang, and H.X. Wu, Mater. Rev. 31, 9 (2017).

    Google Scholar 

  4. N.G. Galkin, K.N. Galkin, I.M. Chernev, R. Fajgar, H. Stuchlikova, J. Stuchlik, and Z. Remes, JJAP Conf. Proc. 3, 011104 (2015).

    Google Scholar 

  5. G.Z. Bai, Z. Liu, J.X. Lin, Z.F. Yu, Y.M. Hu, and C.E. Wen, Mater. Design 90, 424 (2016).

    Article  Google Scholar 

  6. A. Hekmat-Ardakan and F. Ajersch, J. Mater. Process. Tech. 210, 767 (2010).

    Article  Google Scholar 

  7. N.A. Nordin, S. Farahany, T.A.A. Bakar, E. Hamzah, and A. Ourdjin, J. Alloy. Compd. 650, 821 (2015).

    Article  Google Scholar 

  8. N.V. Morozova, S.V. Ovsyannikov, I.V. Korobeinikov, A.E. Karkin, K. Takarabe, Y. Mori, S. Nakamura, and V.V. Shchennikov, J. Appl. Phys. 115, 213705 (2014).

    Article  Google Scholar 

  9. S. Fiameni, S. Boldrini, S. Battiston, F. Agresti, A. Famengo, S. Barison, and M. Fabrizio, AIP Conf. Proc. 1449, 191 (2012).

    Article  Google Scholar 

  10. J.I. Tani and H. Kido, Intermetallics 15, 1202 (2007).

    Article  Google Scholar 

  11. X.P. Han and G.S. Shao, J. Appl. Phys. 112, 013715 (2012).

    Article  Google Scholar 

  12. S. Muthiah, J. Pulikkotil, A.K. Srivastava, A. Kumar, B.D. Pathak, A. Dhar, and R.C. Budhani, Appl. Phys. Lett. 103, 053901 (2013).

    Article  Google Scholar 

  13. J.Y. Jung and I.H. Kim, J. Electron. Mater. 40, 1144 (2011).

    Article  Google Scholar 

  14. J.B. Zhao, Z.X. Liu, J. Reid, K. Takarabe, T. Iida, B. Wang, U. Yoshiya, and J.S. Tse, J. Mater. Chem. A 3, 19774 (2015).

    Article  Google Scholar 

  15. X.D. Tang, G.W. Wang, Y. Zheng, Y.M. Zhang, K.L. Peng, L.J. Guo, S.X. Wang, M. Zeng, J.Y. Dai, G.Y. Wang, and X.Y. Zhou, Scr. Mater. 115, 52 (2016).

    Article  Google Scholar 

  16. S. Tada, Y. Isoda, H. Udono, H. Fujiu, S. Kumagai, and Y. Shinohara, J. Electron. Mater. 43, 1580 (2014).

    Article  Google Scholar 

  17. X. Han and G. Shao, J. Mater. Chem. C 3, 530 (2014).

    Article  Google Scholar 

  18. H. Ihou-Mouko, C. Mercier, J. Tobola, G. Pont, and H. Scherrer, J. Alloys Comp. 509, 6503 (2011).

    Article  Google Scholar 

  19. D.C. Chang, I. Markina, and A. Vasil’Ev, J. Geom. Phys. 986, 61 (2011).

    Google Scholar 

  20. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, J. Phys.: Condens. Matter 14, 2717 (2002).

    Google Scholar 

  21. D. Shi, B. Wen, R. Melnik, S. Yao, and T. Li, J. Solid State Chem. 182, 2664 (2009).

    Article  Google Scholar 

  22. A. Jain, G. Hautier, C.J. Moore, S.P. Ong, C.C. Fischer, T. Mueller, K.A. Persson, and G. Ceder, Comp. Mater. Sci. 50, 2295 (2011).

    Article  Google Scholar 

  23. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  24. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

    Article  Google Scholar 

  25. D.J. Chadi, Phys. B: Condens. Matter 16, 5188 (1977).

    Google Scholar 

  26. B.G. Pfrommer, M. Côté, S.G. Louie, and M.L. Cohen, J. Comp. Phys. 131, 233 (1997).

    Article  Google Scholar 

  27. Y. Imai, Y. Mori, S. Nakamura, and K.I. Takarabe, J. Alloy. Compd. 549, 175 (2013).

    Article  Google Scholar 

  28. R. Yu, G.D. Li, X. Guo, and P.C. Zhai, Comp. Mater. Sci. 149, 49 (2018).

    Article  Google Scholar 

  29. N. Hirayama, T. Iida, S. Morioka, M. Sakamoto, K. Nishio, Y. Kogo, Y. Takanashi, and N. Hamada, J. Mater. Res. 30, 2564 (2015).

    Article  Google Scholar 

  30. H. Wang, W. Chu, and H. Jin, Comp. Mater. Sci. 60, 224 (2012).

    Article  Google Scholar 

  31. P. Jund, R. Viennois, C. Colinet, G. Hug, M. Fèvre, and J.C. Tédenac, J. Phys.: Condens. Matter 25, 035403 (2013).

    Google Scholar 

  32. O. Madelung and L. B€ornstein, J. Phys. Chem. B 163, 432 (1983).

    Google Scholar 

  33. H. Zhang, Y. Wang, S.L. Shang, C. Ravi, C. Wolverton, L.O. Chen, and Z.K. Liu, Calphad 34, 20 (2010).

    Article  Google Scholar 

  34. H. Zhao, Y.H. Zhao, X.M. Yang, H.M. Sui, H. Hou, and P.D. Han, Rare Metal Mater. Eng. 44, 638 (2015).

    Google Scholar 

  35. C.L. Fu, X.D. Wang, and Y.Y. Ye, Intermetallics 7, 179 (1999).

    Article  Google Scholar 

  36. H. Zhang, S.L. Shang, J.E. Saal, A. Saengdeejing, Y. Wang, L.Q. Chen, and Z.K. Liu, Intermetallics 17, 878 (2009).

    Article  Google Scholar 

  37. Y.Y. Ren, T.Y. Liu, and Y.M. Li, Sci. Sinica 46, 084611 (2016).

    Google Scholar 

  38. Z.W. Huang, Y.H. Zhao, H. Hou, and P.D. Han, Phys. B: Condens. Matter 407, 1075 (2012).

    Article  Google Scholar 

  39. Q. Liu and R. Zhang, J. Alloy. Compd. 508, 616 (2010).

    Article  Google Scholar 

  40. H.L. Chen, L. Lin, P.L. Mao, Z. Liu, and J. Magnes, Alloy 3, 197 (2015).

    Article  Google Scholar 

  41. C.H. Li, J.L. Hoe, and P. Wu, J. Phys. Chem. Solids 64, 201 (2003).

    Article  Google Scholar 

  42. X.M. Yang, H. Hou, Y.H. Zhao, L. Yang, and P.D. Han, J. Wuhan Univ. Technol.-Mater Sci. Ed. 29, 1049 (2014).

    Article  Google Scholar 

  43. S.H. Jhi, J. Ihm, S.G. Louie, and M.L. Cohen, Nature 132, 399 (1999).

    Google Scholar 

  44. W.Y. Yu, N. Wang, X.B. Xiao, B.Y. Tang, L.M. Peng, and W.J. Ding, Solid State Sci. 1400, 11 (2009).

    Google Scholar 

  45. M. Mattesini, R. Ahuja, and B. Johansson, Phys. Rev. B 18410, 868 (2003).

    Google Scholar 

  46. P. Boulet, M.J. Verstraete, J.P. Crocombette, M. Briki, and M.C. Record, Comp. Mater. Sci. 50, 847 (2011).

    Article  Google Scholar 

  47. W.H. Fan, Q.S. Meng, L.Q. Wang, B.X. Li, and R.X. Chen, J. Mater. Sci. Eng. 28, 275 (2010).

    Google Scholar 

Download references

Acknowledgments

This project is supported by Science and Technology Research Project, Department of Education, Liaoning Province (LGD2016017). The authors are also grateful to reviewers and Poduval, who provided comments that substantially improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuyan Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Ren, Y. & Li, Y. First Principles Study of Structural Stability, Elastic Properties, and Electronic Structures of Y-Doped Mg2Si. J. Electron. Mater. 48, 1582–1589 (2019). https://doi.org/10.1007/s11664-018-06864-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-06864-2

Keywords

Navigation