Skip to main content
Log in

Flexible Strain Sensor Based on Layer-by-Layer Self-Assembled Graphene/Polymer Nanocomposite Membrane and Its Sensing Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Graphene is a potential building block for next generation electronic devices including field-effect transistors, chemical sensors, and radio frequency switches. Investigations of strain application of graphene-based films have emerged in recent years, but the challenges in synthesis and processing achieving control over its fabrication constitute the main obstacles towards device applications. This work presents an alternative approach, layer-by-layer self-assembly, allowing a controllable fabrication of graphene/polymer film strain sensor on flexible substrates of polyimide with interdigital electrodes. Carboxylated graphene and poly (diallyldimethylammonium chloride) (PDDA) were exploited to form hierarchical nanostructure due to electrostatic action. The morphology and structure of the film were inspected by using scanning electron microscopy, x-ray diffraction and Fourier transform infrared spectroscopy. The strain-sensing properties of the graphene/PDDA film sensor were investigated through tuning micrometer caliper exertion and a PC-assisted piezoresistive measurement system. Experimental result shows that the sensor exhibited not only excellent response and reversibility behavior as a function of deflection, but also good repeatability and acceptable linearity. The strain-sensing mechanism of the proposed sensor was attributed to the electrical resistance change resulted from piezoresistive effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.Z. Zhang, N.N. Anderson, S. Bland, S. Nutt, G. Jursich, and S. Joshi, Sens. Actuators, A 209, 165 (2017).

    Article  Google Scholar 

  2. J.W. Zha, B. Zhang, R.K.Y. Li, and Z.M. Dang, Compos. Sci. Technol. 123, 32 (2016).

    Article  Google Scholar 

  3. M. Moczała, K. Kwoka, T. Piasecki, P. Kunicki, A. Sierakowski, and T. Gotszalk, Microelectron. Eng. 176, 111 (2017).

    Article  Google Scholar 

  4. S.K. Yildiz, R. Mutlu, and G. Alici, Sens. Actuators, A 247, 514 (2016).

    Article  Google Scholar 

  5. E.L. White, J.C. Case, and R.K. Kramer, Sens. Actuators, A 253, 188 (2017).

    Article  Google Scholar 

  6. L. Minati, A. Chiappini, C. Armellini, A. Carpentiero, D. Maniglio, A. Vaccari, L. Zur, A. Lukowiak, M. Ferrari, and G. Speranza, Mater. Chem. Phys. 192, 94 (2017).

    Article  Google Scholar 

  7. S.J. Zhang, H.L. Zhang, G. Yao, F.Y. Liao, M. Gao, Z.L. Huang, K.Y. Li, and Y. Lin, J. Alloys Compd. 652, 48 (2015).

    Article  Google Scholar 

  8. F. Michelis, L. Bodelot, Y. Bonnassieux, and B. Lebental, Carbon 95, 1020 (2015).

    Article  Google Scholar 

  9. K.S. Karimov, F.A. Khalid, and M.T.S. Chani, Measurement 45, 918 (2012).

    Article  Google Scholar 

  10. A. Sanli, A. Benchirouf, C. Müller, and O. Kanoun, Sens. Actuators, A 254, 61 (2017).

    Article  Google Scholar 

  11. S.F. Zhao, Y.J. Gao, G.P. Zhang, L.B. Deng, J.H. Li, R. Sun, and C.P. Wong, Carbon 86, 225 (2015).

    Article  Google Scholar 

  12. M.K. Filippidou, E. Tegou, V. Tsouti, and S. Chatzandroulis, Microelectron. Eng. 142, 7 (2015).

    Article  Google Scholar 

  13. N. Prabhakarrao, M.R. Chandra, and T.S. Rao, J. Alloys Compd. 694, 596 (2017).

    Article  Google Scholar 

  14. B. Ramezanzadeh, M.H.M. Moghadam, N. Shohani, and M. Mahdavian, Chem. Eng. J. 320, 363 (2017).

    Article  Google Scholar 

  15. M.J. Allen, V.C. Tung, and R.B. Kaner, Chem. Rev. 110, 132 (2010).

    Article  Google Scholar 

  16. S.W. Chun, Y.H. Choi, and W.J. Park, Carbon 116, 753 (2017).

    Article  Google Scholar 

  17. R. Moriche, A. Jimenez-Suarez, M. Sanchez, S.G. Prolongo, and A. Urena, Compos. Sci. Technol. 146, 59 (2017).

    Article  Google Scholar 

  18. J.Y. Dong, S.A. Liu, Y.Z. Fu, and Q. Wang, Phys. Lett. A 381, 292 (2017).

    Article  Google Scholar 

  19. A. Nakamura, T. Hamanishi, S. Kawakami, and M. Takeda, Mater. Sci. Eng., B 219, 20 (2017).

    Article  Google Scholar 

  20. Y. Liu, D. Zhang, K. Wang, Y.Y. Liu, and Y. Shang, Compos. Part A 80, 95 (2016).

    Article  Google Scholar 

  21. C. Bonavolontà, C. Aramo, M. Valentino, G. Pepe, S.D. Nicola, G. Carotenuto, A. Longo, M. Palomba, S. Boccardi, and C. Meola, Beilstein J. Nanotechnol. 8, 21 (2017).

    Article  Google Scholar 

  22. J.H. Li, W.X. Li, W.P. Huang, G.P. Zhang, R. Sun, and C.P. Wong, J. Mater. Chem. C 5, 2723 (2017).

    Article  Google Scholar 

  23. D.Y. Wang, L.Q. Tao, Y. Liu, T.Y. Zhang, Y. Pang, Q. Wang, S. Jiang, Y. Yang, and T.L. Ren, Nanoscale 8, 20090 (2016).

    Article  Google Scholar 

  24. G.F. Yu, J.T. Li, W. Pan, X.X. He, Y.J. Zhang, M.G. Gong, M. Yu, Z.M. Zhang, and Y.Z. Long, Compos. Sci. Technol. 139, 1 (2017).

    Article  Google Scholar 

  25. J.N. Pereira, P. Vieira, A. Ferreira, A.J. Paleo, J.G. Rocha, and S. Lanceros-Méndez, J. Polym. Res. 19, 9815 (2012).

    Article  Google Scholar 

  26. A. Ferrreira, J.G. Rocha, A. Ansón-Casaos, M.T. Martínez, F. Vaz, and S. Lanceros-Mendez, Sens. Actuators, A 178, 10 (2012).

    Article  Google Scholar 

  27. M. Borghetti, M. Serpelloni, E. Sardini, and S. Pandini, Sens. Actuators, A 243, 71 (2016).

    Article  Google Scholar 

  28. D. Zhang, C. Jiang, and Y. Sun, J. Alloys Compd. 698, 476 (2017).

    Article  Google Scholar 

  29. D. Zhang, H. Chang, P. Li, R. Liu, and Q. Xue, Sen. Actuators B 225, 233 (2016).

    Article  Google Scholar 

  30. D. Zhang, J. Tong, K. Wang, B. Xia, and Q. Xue, Sens. Actuators, B 203, 263 (2014).

    Article  Google Scholar 

  31. Z. Wang, J. Ju, J. Yang, Z. Ma, D. Liu, K. Cui, H. Yang, J. Chang, N. Huang, and L. Li, Sci. Rep. 6, 32968 (2016).

    Article  Google Scholar 

  32. D. Zhang, J. Tong, and B. Xia, Sens. Actuators, B 197, 66 (2014).

    Article  Google Scholar 

  33. Y.Y. Yu, Z.G. Chen, B.B. Zhang, X.C. Li, and J.B. Pan, Talanta 112, 31 (2013).

    Article  Google Scholar 

  34. I.A. Currie, Pure Appl. Chem. 67, 1699 (1995).

    Article  Google Scholar 

  35. M.Y. Tsai, A. Tarasov, Z.R. Hesabi, H. Taghinejad, P.M. Campbell, C.A. Joiner, A. Adibi, and E.M. Vogel, ACS Appl. Meter. Interfaces 7, 12850 (2015).

    Article  Google Scholar 

  36. T. Yang, X. Jiang, Y. Zhong, X. Zhao, S. Lin, J. Li, X. Li, J. Xu, Z. Li, and H.A. Zhu, ACS Sen. 2, 967 (2017).

    Article  Google Scholar 

  37. J.S. Noh, Nanoscale Res. Lett. 8, 441 (2013).

    Article  Google Scholar 

  38. S.M. Won, H.S. Kim, N. Lu, D.G. Kim, C.D. Solar, T. Duenas, A. Ameen, and J.A. Rogers, IEEE Trans. Electron. Dev. 58, 4074 (2011).

    Article  Google Scholar 

  39. J.S. Ren, C.X. Wang, X. Zhang, T. Carey, K.L. Chen, Y.J. Yin, and F. Torrisi, Carbon 111, 622 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongzhi Zhang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Jiang, C., Tong, J. et al. Flexible Strain Sensor Based on Layer-by-Layer Self-Assembled Graphene/Polymer Nanocomposite Membrane and Its Sensing Properties. J. Electron. Mater. 47, 2263–2270 (2018). https://doi.org/10.1007/s11664-017-6052-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-6052-1

Keywords

Navigation