Skip to main content
Log in

First-Principle Calculations to Investigate the Elastic, Thermoelectric, and Electronic Performances of XRhSn (X = V, Nb, Ta) Half-Heusler Compounds

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Half-Heusler alloy is an excellent thermoelectric material. In our studies, we studied and compared the elastic, electronic, and thermoelectric properties of three half-Heusler alloys, VRhSn, NbRhSn, and TaRhSn by combining the Boltzmann transport theory and deformation potential theory. Additionally, we used Slack’s model to compute the lattice thermal conductivity. We found that n-type compound TaRhSn has ZT values of 2.13 with 1.22 × 1020 cm−3 at 1200 K; NbRhSn has ZT values of 1.41 with 1.26 × 1020 cm−3 at 1100 K, respectively. These discoveries suggest that TaRhSn and NbRhSn compounds may become new high-temperature thermoelectric materials. The effective masses of TaRhSn and NbRhSn conduction bands are only 0.38 me and 0.33 me, respectively, causing the higher carrier mobilities and relaxation times. At 1200 K, the lattice thermal conductivities of TaRhSn and NbRhSn compounds are only 3.60 W/mK and 3.41 W/mK, respectively; this may be caused by strong phonon–phonon interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Snyder, G.J., Toberer, E.S.: Complex thermoelectric materials, in: Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific. 101–110 (2011)

  2. DiSalvo, F.J.: Thermoelectric cooling and power generation. Science. 285, 703–706 (1999)

    Article  Google Scholar 

  3. Yang, J., Xi, L., Qiu, W., Wu, L., Shi, X., Chen, L., Yang, J., Zhang, W., Uher, C., Singh, D.J.: On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective. NPJ Comput. Mater. 2, 1–17 (2016)

    Article  Google Scholar 

  4. Skelton, J.M., Parker, S.C., Togo, A., Tanaka, I., Walsh, A.: Thermal physics of the lead chalcogenides PbS. PbSe, and PbTe from first principles. Phys. Rev. B. 89, 205203 (2014)

    ADS  Google Scholar 

  5. Pei, Y., Shi, X., LaLonde, A., Wang, H., Chen, L., Snyder, G.J.: Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011)

    Article  ADS  Google Scholar 

  6. Morelli, D., Caillat, T., Fleurial, J.-P., Borshchevsky, A., Vandersande, J., Chen, B., Uher, C.: Low-temperature transport properties of p-type CoSb 3. Phys. Rev. B 51, 9622 (1995)

    Article  ADS  Google Scholar 

  7. Ding, G., Gao, G., Yao, K.: Thermoelectric performance of half-Heusler compounds MYSb (M= Ni, Pd, Pt). J. Phys. D Appl. Phys. 47, 385305 (2014)

    Article  ADS  Google Scholar 

  8. Jiang, Q., Wan, R., Zhang, Z., Lei, Y., Tian, G.: First-principles calculations to investigate Zr substitution enhanced thermoelectric performance of p-type ZrxHf1− xCoBi (x= 0, 0.25, 0.5, 0.75, 1) compounds. Phys. Lett. A, 424, 127839 (2022)

  9. Xiong, X., Jiang, Q., Wan, R., Zhang, Z., Lei, Y., Tian, G.: Computational prediction of high thermoelectric performance in MPtSn (M= Ti, Zr, and Hf) half-Heusler compounds by first-principle study. Solid State Sci. 106859 (2022)

  10. Zhang, Q., Yang, C.-L., Wang, M.-S., Ma, X.-G.: Thermoelectric performance of BaBiNa and SrBiNa: a first-principle study. Mater. Today Commun. 26, 101971 (2021)

    Article  Google Scholar 

  11. Ye, X., Feng, Z., Zhang, Y., Zhao, G., Singh, D.J.: Low thermal conductivity and high thermoelectric performance via Cd underbonding in half-Heusler PCdNa. Phys. Rev. B 105, 104309 (2022)

    Article  ADS  Google Scholar 

  12. Parsamehr, S., Boochani, A., Amiri, M., Solaymani, S., Sartipi, E., Naderi, S., Aminian, A.: Thermodynamic phase diagram and thermoelectric properties of LiMgZ (Z= P, As, Bi): ab initio method study. Phil. Mag. 101, 369–386 (2021)

    Article  ADS  Google Scholar 

  13. Wang, Q., Xie, X., Li, S., Zhang, Z., Li, X., Yao, H., Chen, C., Cao, F., Sui, J., Liu, X.: Enhanced thermoelectric performance in Ti (Fe Co, Ni) Sb pseudo-ternary half-Heusler alloys. J. Materiom. 7, 756–765 (2021)

    Article  Google Scholar 

  14. Almaghbash, Z., Arbouche, O., Dahani, A., Cherifi, A., Belabbas, M., Zenati, A., Mebarki, H., Hussain, A.: Thermoelectric and piezoelectric properties in half-Heusler compounds TaXSn (X= Co, Rh and Ir) based on ab initio calculations. Int. J. Thermophys. 42, 1–19 (2021)

    Article  Google Scholar 

  15. Khaldi, A., Benallou, Y., Zemouli, M., Amara, K., El Keurti, M.: First Principle Study and Optimal Doping for High Thermoelectric Performance of TaXSn Materials (X= Co, Ir and Rh). (2021)

  16. Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  17. Kresse, G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  18. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple (vol 77, pg 3865, 1996), in, Aerican Physical Soc One Physics Ellipse, College PK, MD 20740–3844 USA. 1396–1396 (1997)

  19. Koller, D., Tran, F., Blaha, P.: Improving the modified Becke-Johnson exchange potential. Phys. Rev. B 85, 155109 (2012)

    Article  ADS  Google Scholar 

  20. Yang, K., Wan, R., Zhang, Z., Lei, Y., Tian, G.: First-principle investigation on the thermoelectric and electronic properties of HfCoX (X= As, Sb, Bi) half-Heusler compounds. J. Solid State Chem. 314, 123386 (2022)

    Article  Google Scholar 

  21. Gautier, R., Zhang, X., Hu, L., Yu, L., Lin, Y., Sunde, T.O., Chon, D., Poeppelmeier, K.R., Zunger, A.: Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. Nat. Chem. 7, 308–316 (2015)

    Article  Google Scholar 

  22. Sofo, J., Mahan, G.: Electronic structure of CoSb 3: a narrow-band-gap semiconductor. Phys. Rev. B 58, 15620 (1998)

    Article  ADS  Google Scholar 

  23. Cherchab, Y., González-Hernández, R.: Structural stability and thermoelectric properties of new discovered half-Heusler KLaX (X= C, Si, Ge, and Sn) compounds. Comput. Theor. Chem. 1200, 113231 (2021)

    Article  Google Scholar 

  24. Born, M., Huang, K., Lax, M.: Dynamical theory of crystal lattices. Am. J. Phys. 23, 474–474 (1955)

    Article  ADS  Google Scholar 

  25. Born, M., Fürth, R.: The stability of crystal lattices. III: an attempt to calculate the tensile strength of a cubic lattice by purely static considerations, in: Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press. 454–465 (1940)

  26. Ciftci, Y.O., Mahanti, S.D.: Electronic structure and thermoelectric properties of half-Heusler compounds with eight electron valence count—KScX (X= C and Ge). J. Appl. Phys. 119, 145703 (2016)

    Article  ADS  Google Scholar 

  27. Schreiber, E., Anderson, O.L., Soga, N., Bell, J.F.: Elastic constants and their measurement. (1975)

  28. Fu, H., Li, X., Liu, W., Ma, Y., Gao, T., Hong, X.: Electronic and dynamical properties of NiAl studied from first principles. Intermetallics. 19, 1959–1967 (2011)

    Article  Google Scholar 

  29. Pugh, S.: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of  Science. 45, 823–843 (1954)

  30. Kaur, K., Kumar, R.: High temperature thermoelectric performance of p-type TaRhSn half Heusler compound: a computational assessment. Ceram. Int. 43, 15160–15166 (2017)

    Article  Google Scholar 

  31. Xiong, X., Wan, R., Zhang, Z., Lei, Y., Tian, G.: First-principle investigation on the thermoelectric properties of XCoGe (X= V, Nb, and Ta) half-Heusler compounds. Mater. Sci. Semicond. Process. 140, 106387 (2022)

    Article  Google Scholar 

  32. Meghoufel, Z., Cherifi, F., Boukra, A., Terki, F.: Ab-initio investigation on the electronic and thermoelectric properties of new half-Heusler compounds KBiX (X= Ba and Sr). J. Phys.: Condens. Matter. 33, 395701 (2021)

    Google Scholar 

  33. Ma, H., Yang, C.-L., Wang, M.-S., Ma, X.-G.: AgKTe: an intrinsic semiconductor material with high thermoelectric properties at room temperature. J. Alloy. Compd. 739, 35–40 (2018)

    Article  Google Scholar 

  34. Zomer, R.J., Neufeldt, H., Xu, J., Ahrends, A., Bossio, D., Trabucco, A., Van Noordwijk, M., Wang, M.: Global tree cover and biomass carbon on agricultural land: the contribution of agroforestry to global and national carbon budgets. Sci. Rep. 6, 1–12 (2016)

    Article  Google Scholar 

  35. Cai, Y., Zhang, G., Zhang, Y.-W.: Polarity-reversed robust carrier mobility in monolayer MoS2 nanoribbons. J. Am. Chem. Soc. 136, 6269–6275 (2014)

    Article  Google Scholar 

  36. Madsen, G.K., Carrete, J., Verstraete, M.J.: BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 231, 140–145 (2018)

    Article  ADS  Google Scholar 

  37. Zhu, T., Liu, Y., Fu, C., Heremans, J.P., Snyder, J.G., Zhao, X.: Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater. 29, 1605884 (2017)

    Article  Google Scholar 

  38. Liu, W., Yan, X., Chen, G., Ren, Z.: Recent advances in thermoelectric nanocomposites. Nano Energ. 1, 42–56 (2012)

    Article  Google Scholar 

  39. Sun, H.-L., Yang, C.-L., Wang, M.-S., Ma, X.-G.: Remarkably high thermoelectric efficiencies of the half-Heusler compounds BXGa (X= Be, Mg, and Ca). ACS Appl. Mater. Interfaces. 12, 5838–5846 (2020)

    Article  Google Scholar 

  40. Ma, H., Yang, C.-L., Wang, M.-S., Ma, X.-G., Yi, Y.-G.: Effect of M elements (M= Ti, Zr, and Hf) on thermoelectric performance of the half-Heusler compounds MCoBi. J. Phys. D Appl. Phys. 52, 255501 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Kai Yang: writing—original draft; methodology; data curation; formal analysis. Rundong Wan: investigation; supervision; writing—review and editing. Zhengfu Zhang: writing—review and editing. Ying Lei: writing—review and editing. Guocai Tian: software.

Corresponding author

Correspondence to Rundong Wan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Wan, R., Zhang, Z. et al. First-Principle Calculations to Investigate the Elastic, Thermoelectric, and Electronic Performances of XRhSn (X = V, Nb, Ta) Half-Heusler Compounds. J Supercond Nov Magn 36, 1043–1051 (2023). https://doi.org/10.1007/s10948-023-06536-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-023-06536-1

Keywords

Navigation