Skip to main content
Log in

Influence of Nb Doping Concentration on Bolometric Properties of RF Magnetron Sputtered Nb:TiO2−x Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The present study directly addresses the improved bolometric properties by means of different Nb doping concentrations into TiO2−x films. The x-ray diffraction patterns do not display any obvious diffraction peaks, suggesting that all the films deposited at room temperature had an amorphous structure. A small binding energy shift was observed in x-ray photo electron spectroscopy due to the change of chemical composition with Nb doping concentration. All the device samples exhibit linear IV characteristics, which attests to the formation of good ohmic contact with low contact resistance between the Nb:TiO2−x (TNO) film and the electrode (Ti) material. The performance of the bolometric material can be evaluated through the temperature coefficient of resistance (TCR), and the absolute value of TCR was found to be increased from 2.54% to 2.78% with increasing the Nb doping concentration. The voltage spectral density of 1/f noise was measured in the frequency range of 1–60 Hz and found to be decreased with increase of Nb doping concentration. As a result, for 1 at.% Nb-doped TNO sample exhibits improved bolometric properties towards the good infrared image sensor device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rogalski, Infrared Phys. Technol. 54, 136 (2011).

    Article  Google Scholar 

  2. W.-B. Song and J.J. Talghader, Appl. Phys. Lett. 81, 550 (2002).

    Article  Google Scholar 

  3. A. Lapadatu, G. Kittilsland, A. Elfving, E. Hohler, T. Kvisteroy, T. Bakke, and P. Ericsson, Proc. SPIE 7660, 766016 (2010).

    Article  Google Scholar 

  4. P.H. Handel, Phys. Rev. A 22, 745 (1980).

    Article  Google Scholar 

  5. A.P. Gruzdeva, V.Y. Zerov, O.P. Konovalova, Y.V. Kulikov, V.G. Malyarov, I.A. Khrebtov, and I.I. Shaganov, J. Opt. Technol. 64, 1110 (1997).

    Google Scholar 

  6. H.B. Shin, D.S. John, M.Y. Lee, N.J. Podraza, and T.N. Jackson, J. Appl. Phys. 114, 183705 (2013).

    Article  Google Scholar 

  7. K.C. Liddard, Infrared Phys. 24, 57 (1984).

    Article  Google Scholar 

  8. L. Mechin, J.C. Villegier, P. Langlois, D. Robbes, and D. Bloyet, Sens. Actuators A 55, 19 (1996).

    Article  Google Scholar 

  9. C.M. Travers, A. Jahanzeb, D.P. Butler, and Z. Celik-Butler, J. Microelectromech. Syst. 6, 271 (1997).

    Article  Google Scholar 

  10. Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada, and T. Hasegawa, Appl. Phys. Lett. 86, 252101 (2005).

    Article  Google Scholar 

  11. N. Yamada, T. Hitosugi, H. Kasai, N.L.H. Hoang, S. Nakao, Y. Hirose, T. Shimada, and T. Hasegawa, J. Appl. Phys. 105, 123702 (2009).

    Article  Google Scholar 

  12. K. Tonooka, T.-W. Chiu, and N. Kikuchi, Appl. Surf. Sci. 255, 9695 (2009).

    Article  Google Scholar 

  13. Y.A.K. Reddy, I.-K. Kang, Y.B. Shin, and H.C. Lee, J. Phys. D Appl. Phys. 48, 355104 (2015).

    Article  Google Scholar 

  14. Y.A.K. Reddy, Y.B. Shin, I.-K. Kang, H.C. Lee, and P.S. Reddy, Appl. Phys. Lett. 107, 023503 (2015).

    Article  Google Scholar 

  15. Y.A.K. Reddy, Y.B. Shin, I.-K. Kang, and H.C. Lee, Ceram. Int. 42, 17123 (2016).

    Article  Google Scholar 

  16. H. Kamisaka, T. Hitosugi, T. Suenaga, T. Hasegawa, and K. Tamashita, J. Chem. Phys. 131, 034702 (2009).

    Article  Google Scholar 

  17. D. Kurita, S. Ohta, K. Sugiura, H. Ohta, and K. Koumoto, J. Appl. Phys. 100, 096105 (2006).

    Article  Google Scholar 

  18. J. Arbiol, J. Gerda, G. Dezanneau, A. Cirera, F. Peiro, A. Cornet, and J.R. Morante, J. Appl. Phys. 92, 853 (2002).

    Article  Google Scholar 

  19. B. Mei, M.D. Sanchez, T. Reinecke, S. Kaluza, W. Xia, and M. Muhler, J. Mater. Chem. 21, 11781 (2011).

    Article  Google Scholar 

  20. E. Uyanga, A. Gibaud, P. Daniel, D. Sangaa, G. Sevjidsuren, P. Altantsog, T. Beuvier, C.H. Lee, and A.M. Balagurov, Mater. Res. Bull. 60, 222 (2014).

    Article  Google Scholar 

  21. M.P. Seah, C.A. Clifford, F.M. Green, and I.S. Gilmore, Surf. Interface Anal. 37, 444 (2005).

    Article  Google Scholar 

  22. J. Musil, J. Sicha, D. Herman, and R. Cerstvy, J. Vac. Sci. Technol. A 25, 666 (2007).

    Article  Google Scholar 

  23. L. Lu, M. Guo, S. Thornley, X. Han, J. Hu, M.J. Thwaites, and G. Shao, Sol. Energy Mater. Sol. Cells 149, 310 (2016).

    Article  Google Scholar 

  24. Y.A.K. Reddy, Y.B. Shin, I.-K. Kang, and H.C. Lee, J. Appl. Phys. 119, 044504 (2016).

    Article  Google Scholar 

  25. L. Lu, X. Xia, J.K. Luo, and G. Shao, J. Phys. D Appl. Phys. 48, 485102 (2012).

    Article  Google Scholar 

  26. Y. Sato, H. Akizuki, T. Kamiyama, and Y. Shigesato, Thin Solid Films 516, 5758 (2008).

    Article  Google Scholar 

  27. D. Morris, Y. Dou, J. Rebane, C.E.J. Mitchell, R.G. Egdell, D.S.L. Law, A. Vittadini, and M. Casarin, Phys. Rev. B 61, 13445 (2000).

    Article  Google Scholar 

  28. D. Dobler, S. Oswald, and K. Wetzig, Anal. Bioanal. Chem. 374, 646 (2002).

    Article  Google Scholar 

  29. Y. Lu, S. Khan, C.L. Song, K.K. Wang, G.Z. Yuan, W. Li, G.R. Han, and Y. Liu, J. Alloys Compd. 663, 413 (2016).

    Article  Google Scholar 

  30. M.A. Henderson, W.S. Epling, C.H.F. Peden, and C.L. Perkins, J. Phys. Chem. B 107, 534 (2003).

    Article  Google Scholar 

  31. A.V. Manole, M. Dobromirb, M. Girtan, R. Mallet, G. Rusu, and D. Luca, Ceram. Int. 39, 4771 (2013).

    Article  Google Scholar 

  32. B.K. Kaleji, R. Sarraf-Mamoory, and A. Fujishima, Mater. Chem. Phys. 132, 210 (2012).

    Article  Google Scholar 

  33. T.L. Thompson and J.T. Yates, Chem. Rev. 106, 4428 (2006).

    Article  Google Scholar 

  34. J.C. Colmenares, M.A. Aramendia, A. Marinas, J.M. Marinas, and F.J. Urbano, Appl. Catal. A 306, 120 (2006).

    Article  Google Scholar 

  35. J. Zhong, F. Chen, and J. Zhang, J. Phys. Chem. C 114, 933 (2010).

    Article  Google Scholar 

  36. F.N. Hooge, IEEE Trans. Electron Devices 41, 1926 (1994).

    Article  Google Scholar 

  37. S. Mouetsi, Moroc. J. Condens. Matter 13, 59 (2011).

    Google Scholar 

  38. P.C. Shan, Z. Celik-Butler, D.P. Butler, A. Jahanzeb, C.M. Travers, W. Kula, and R. Sobolewski, J. Appl. Phys. 80, 7118 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ashok Kumar Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, Y.A.K., Shin, Y.B., Kang, IK. et al. Influence of Nb Doping Concentration on Bolometric Properties of RF Magnetron Sputtered Nb:TiO2−x Films. J. Electron. Mater. 47, 2171–2176 (2018). https://doi.org/10.1007/s11664-017-6028-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-6028-1

Keywords

Navigation