Skip to main content
Log in

Study on Structural and Dielectric Properties of Ultra-Low-Fire Integratable Dielectric Film for High-Frequency and Microwave Application

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, ultra-low-fire ceramic composites of Zn2Te3O8-30 wt.%TiTe3O8 (ZTT) were prepared by a solid-state reaction method. Densified at 600°C, the best microwave dielectric properties at 8.5 GHz were measured with the ε r , tanδ, Q × f, and τ f as 25.6, 1.5 × 10−4, 56191 GHz and 1.66 ppm/°C, respectively. Thin films of ultra-low-fire ZTT were prepared by a radio-frequency magnetron sputtering method. ZTT films which deposited on Au/NiCr/SiO2/Si (100) substrates at 200°C showed good adhesion. From ultra-low-fire ceramic to ultra-low-fire ZTT thin films, the latter maintained all the good high-frequency dielectric properties of the former: high dielectric constant (ε r  ∼ 25) and low dissipation factor (tanδ < 5×10−3), low leakage current density (∼ 10−9 A/cm2) and ultra low processing temperature. These excellent properties of the ultra-low-fire ZTT thin film make it possible to be integrated in MMIC and be applied in the research of GaN and GaAs MOSFET devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.H. Ng, K.W. Chew, and S.F. Chu, IEEE Electron Device Lett. 24, 506 (2003).

    Article  Google Scholar 

  2. L.Y. Tu, H.L. Lin, L.L. Chao, D. Wu, C.S. Tsai, C. Wang, C.F. Huang, C.H. Lin, and J. Sun, Symposium on VLSI Technology (2003), p. 79–80.

  3. S.B. Chen, J.H. Lai, K.T. Chan, A. Chin, J.C. Hsieh, and J. Liu, IEEE Electron Device Lett. 23, 203 (2002).

    Article  Google Scholar 

  4. C. Zhu, H. Hu, X.Yu, A. Chin, M.F. Li, and D.L. Kwong, IEDM Technical Digest (2003), p. 379–382.

  5. S.J. Kim, B.J. Cho, M.-F. Li, C. Zhu, A. Chin, and D.L. Kwong, Symposium on VLSI Technology (2003), p. 77–78.

  6. S.J. Kim, B.J. Cho, S.J. Ding, M.-F. Li, M.B. Yu, C. Zhu, A. Chin, and D.-L. Kwong, Symposium on VLSI Technology (2004), p. 218–219.

  7. C. Zhu, H. Hu, X. Yu, and S.J. Kim, IEDM Technical Digest (2003), p. 879–882.

  8. T. Ishikawa, D. Kodama, Y. Matsui, M. Hiratani, T. Furusawa, and D. Hisamoto, IEDM Technical Digest (2002), p. 940–942.

  9. R.A. Bakar, S. Sulaiman, and N.F.M. Lazim, International Conference on Nanoscience and Nanotechnology, (NANO-Sci-Tech 2008), p. 385.

  10. K. Sudheendran, K.C.J. Raju, and M.K. Singh, J. Appl. Phys. 104, 104104 (2008).

    Article  Google Scholar 

  11. W. Chen, K.G. McCarthy, and A. Mathewson, IEEE Electron Device Lett. 31, 996 (2010).

    Article  Google Scholar 

  12. T. Kim, A.I. Kingon, J.P. Maria, and R.T. Croswell, J. Mater. Res. 19, 2841 (2004).

    Article  Google Scholar 

  13. A.I. Kingon and S. Srinivasan, Nat. Mater. 4, 233 (2005).

    Article  Google Scholar 

  14. D. Zhou, C.A. Randall, H. Wang, L.X. Pang, and X. Yao, J. Am. Ceram. Soc. 93, 1096 (2010).

    Article  Google Scholar 

  15. D. Zhou, C.A. Randall, L.X. Pang, H. Wang, X.G. Wu, J. Guo, G.Q. Zhang, L. Shui, and X. Yao, J. Am. Ceram. Soc. 94, 802 (2011).

    Article  Google Scholar 

  16. W.H. Liu, H. Wang, D. Zhou, and K.C. Li, J. Am. Ceram. Soc. 93, 2202 (2010).

    Article  Google Scholar 

  17. K.T. Kang, M.H. Lim, H.G. Kim, Y. Choi, H.L. Tuller, I.D. Kim, and J.M. Hong, Appl. Phys. Lett. 87, 242908 (2005).

    Article  Google Scholar 

  18. K.C. Chiang, C.H. Lai, A. Chin, T.J. Wang, H.F. Chiu, J.R. Chen, S.P. McAlister, and C.C. Chi, IEEE Electron Device Lett. 26, 728 (2005).

    Article  Google Scholar 

  19. C.H. Choi, J.Y. Choi, K.H. Cho, M.J. Yoo, J.H. Choi, S. Nahm, C.Y. Kang, S.J. Yoon, and H.J. Lee, J. Electrochem. Soc. 155, G87 (2008).

    Article  Google Scholar 

  20. N. Dewan, V. Gupta, K. Sreenivas, and R.S. Katiyar, J. Appl. Phys. 101, 084910 (2007).

    Article  Google Scholar 

  21. Y.H. Jeong, J.B. Lim, S. Nahm, H.J. Sun, and H.J. Lee, IEEE Electron Device Lett. 28, 17 (2007).

    Article  Google Scholar 

  22. S.F. Wang, Y.F. Hsu, Y.R. Wang, and C.C. Sung, J. Am. Ceram. Soc. 94, 812 (2011).

    Article  Google Scholar 

  23. S.F. Wang, Y.R. Wang, Y.F. Hsu, and J.S. Tsai, J. Eur. Ceram. Soc. 30, 1737 (2010).

    Article  Google Scholar 

  24. S.J. Fiedziuszko, I.C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S.N. Stitzer, and K. Wakino, IEEE Trans. Microwave Theory Tech. 50, 706 (2002).

    Article  Google Scholar 

  25. D.K. Kwon, M.T. Lanagan, and T.R. Shrout, Mater. Lett. 61, 2007 (1827).

    Google Scholar 

  26. D. Zhou, D. Guo, W.B. Li, L.X. Pang, X. Yao, D.W. Wang, and I.M. Reaney, J. Mater. Chem. C 4, 5357 (2016).

    Article  Google Scholar 

  27. L.X. Pang, D. Zhou, Z.M. Qi, W.G. Liu, Z.X. Yue, and I.M. Reaney, J. Mater. Chem. C 5, 2695 (2017).

    Article  Google Scholar 

  28. S.-F. Wang, Y.-F. Hsu, Y.-R. Wang, and C.-C. Sung, J. Am. Ceram. Soc. 94, 812 (2011).

    Article  Google Scholar 

  29. M. Udovic, M. Valant, and D. Suvorov, J. Am. Ceram. Soc. 87, 591 (2004).

    Article  Google Scholar 

  30. G. He, J. Liu, H. Chen, Y. Liu, Z. Sun, X. Chen, M. Liu, and L. Zhang, J. Mater. Chem. C 2, 5299 (2014).

    Article  Google Scholar 

  31. G. He, J. Gao, H. Chen, J. Cui, Z. Sun, X. Chen, and A.C.S. Appl, Mater. Interfaces 6, 22013 (2014).

    Article  Google Scholar 

  32. J. Zhang, G. He, L. Zhou, H. Chen, X. Chen, B. Deng, J. Lv, and Z. Sun, Alloys Compd. 611, 253 (2014).

    Article  Google Scholar 

  33. G. He, B. Deng, H. Chen, X. Chen, J. Lv, Y. Ma, and Z. Sun, APL Mater. 1, 012104 (2013).

    Article  Google Scholar 

  34. J.C. Yang, X.Q. Meng, C.T. Yang, and Y. Zhang, Appl. Surf. Sci. 287, 355 (2013).

    Article  Google Scholar 

  35. H.B. Zhou, H.Y. Zhang, L.W. Han, and J.C. Han, Superlattice Microst. 64, 563 (2013).

    Article  Google Scholar 

  36. C.H. Choi, J.Y. Choi, K.H. Cho, M.J. Yoo, S. Nahm, C.Y. Kang, S.J. Yoon, and J.H. Kim, Electrochem. Solid St. 11, G51 (2008).

    Article  Google Scholar 

  37. C.H. Choi, J.Y. Choi, K.H. Cho, M.J. Yoo, S. Nahm, C.Y. Kang, S.J. Yoon, and J.H. Kim, J. Electrochem. Soc. 155, G199 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Innovation Foundation of Collaboration Innovation Center of Electronic Materials and Devices (No. ICEM2015-4002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, S., Zhang, J., Wu, K. et al. Study on Structural and Dielectric Properties of Ultra-Low-Fire Integratable Dielectric Film for High-Frequency and Microwave Application. J. Electron. Mater. 47, 1944–1951 (2018). https://doi.org/10.1007/s11664-017-5995-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5995-6

Keywords

Navigation