Skip to main content
Log in

Synthesis and Performance of Highly Stable Star-Shaped Polyaniline Electrochromic Materials with Triphenylamine Core

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The molecular architecture of conducting polymers has a significant impact on their conjugated structure and electrochemical properties. We have investigated the influence of star-shaped structure on the electrochemical and electrochromic properties of polyaniline (PANI). Star-shaped PANI (SPANI) was prepared by copolymerization of aniline with triphenylamine (TPA) using an emulsion polymerization method. With addition of less than 4.0 mol.% TPA, the resulting SPANI exhibited good solubility in xylene with dodecylbenzenesulfonic acid (DBSA) as doping acid. The structure and thermal stability of the SPANI were characterized using Fourier-transform infrared spectroscopy, Raman spectroscopy, and thermogravimetric analysis, and the electrochemical behavior was analyzed by cyclic voltammetry (CV). The electrochromic properties of SPANI were tested using an electrochemical workstation combined with an ultraviolet–visible (UV–Vis) spectrometer. The results show that, with increasing TPA loading, the thermal stability of SPANI increased. With addition of 4.0 mol.% TPA, the weight loss of SPANI was 36.9% at 700°C, much lower than the value of 71.2% for PANI at the same temperature. The low oxidation potential and large enclosed area of the CV curves indicate that SPANI possesses higher electrochemical activity than PANI. Enhanced electrochromic properties including higher optical contrast and better electrochromic stability of SPANI were also obtained. SPANI with 1.6 mol.% TPA loading exhibited the highest optical contrast of 0.71, higher than the values of 0.58 for PANI, 0.66 for SPANI-0.4%, or 0.63 for SPANI-4.0%. Overdosing of TPA resulted in slow switching speed due to slow ion transport in short branched chains of star-shaped PANI electrochromic material. Long-term stability testing confirmed that all the SPANI-based devices exhibited better stability than the PANI-based device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.T. Neo, Q. Ye, S.-J. Chua, and J. Xu, J. Mater. Chem. C 4, 7364 (2016).

    Article  Google Scholar 

  2. P. Chandrasekhar, B.J. Zay, T. McQueeney, G.C. Birur, V. Sitaram, R. Menon, M. Coviello, and R.L. Elsenbaumer, Synth. Met. 155, 623 (2005).

    Article  Google Scholar 

  3. R.J. Mortimer, Annu. Rev. Mater. Res. 41, 241 (2011).

    Article  Google Scholar 

  4. R.J. Mortimer, D.R. Rosseinsky, and P.M.S. Monk, Electrochromic Materials and Devices (Weinheim: Wiley, 2015), pp. 262–266.

    Google Scholar 

  5. A.J.C. Silva, V.C. Nogueira, T.E.A. Santos, C.J.T. Buck, D.R. Worrall, J. Tonholo, R.J. Mortimer, and A.S. Ribeiro, Sol. Energy Mater. Sol. Cells 134, 122 (2015).

    Article  Google Scholar 

  6. S. Soylemez, S.O. Hacioglu, S.D. Uzun, and L. Toppare, J. Electrochem. Soc. 162, H6 (2015).

    Article  Google Scholar 

  7. W.T. Neo, K.H. Ong, T.T. Lin, S.-J. Chua, and J. Xu, J. Mater. Chem. C 3, 5589 (2015).

    Article  Google Scholar 

  8. Z. Xu, X. Chen, S. Mi, J. Zheng, and C. Xu, Org. Electron. Phys. Mater. Appl. 26, 129 (2015).

    Google Scholar 

  9. K. Lin, S. Ming, S. Zhen, Y. Zhao, B. Lu, and J. Xu, Polym. Chem. 6, 4575 (2015).

    Article  Google Scholar 

  10. M. Ouyang, P. Wang, Z. Fu, and C. Zhang, Integr. Ferroelectr. 153, 107 (2014).

    Article  Google Scholar 

  11. C. Li, C. Liu, L. Shi, and G. Nie, J. Mater. Sci. 50, 1836 (2015).

    Article  Google Scholar 

  12. P. Xu, I. Murtaza, J. Shi, M. Zhu, Y. He, H. Yu, O. Gotoa, and H. Meng, Polym. Chem. 7, 5351 (2016).

    Article  Google Scholar 

  13. X. Cheng, J. Zhao, Y. Fu, C. Cui, and X. Zhang, J. Electrochem. Soc. 160, G6 (2013).

    Article  Google Scholar 

  14. E. Kavaka, C.N. Usb, E. Yavuzb, A. Kivraka, and Mİ. Özkut, Electrochim. Acta 182, 537 (2015).

    Article  Google Scholar 

  15. H.-J. Yen, H.-Y. Lin, and G.-S. Liou, Chem. Mater. 23, 1874 (2011).

    Article  Google Scholar 

  16. C.-W. Chang, G.-S. Liou, and S.-H. Hsiao, J. Mater. Chem. 17, 1007 (2007).

    Article  Google Scholar 

  17. L.-T. Huang, H.-J. Yen, and G.-S. Liou, Macromolecules 44, 9595 (2011).

    Article  Google Scholar 

  18. J.S. Lee, Y.-J. Choi, S.-J. Wang, H.-H. Park, and J.C. Pyun, Phys. Status Solidi A Appl. Mater. Sci. 208, 81 (2011).

    Article  Google Scholar 

  19. P.S. Vijayanand, J. Vivekanandan, A. Mahudeswaran, and R. Jayaprakasam, Macromol. Symp. 362, 65 (2016).

    Article  Google Scholar 

  20. S. Xiong, J. Wei, P. Jia, L. Yang, J. Ma, and X. Lu, ACS Appl. Mater. Interfaces 3, 782 (2011).

    Article  Google Scholar 

  21. S. Xiong, J. Lan, S. Yin, Y. Wang, Z. Kong, M. Gong, B. Wu, J. Chu, X. Wang, R. Zhang, and Y. Li, Sol. Energy Mater. Sol. Cells. https://doi.org/10.1016/j.solmat.2017.01.003.

  22. R. Pacios, R. Marcilla, C. Pozo-Gonzalo, J.A. Pomposo, H. Grande, J. Aizpurua, and D. Mecerreyes, J. Nanosci. Nanotechnol. 7, 2938 (2007).

    Article  Google Scholar 

  23. S. Xiong, S.L. Phua, B.S. Dunn, J. Ma, and X. Lu, Chem. Mater. 22, 255 (2010).

    Article  Google Scholar 

  24. S. Xiong, P. Jia, K.Y. Mya, J. Ma, F. Boey, and X. Lu, Electrochim. Acta 53, 3523 (2008).

    Article  Google Scholar 

  25. S. Xiong, Y. Xiao, J. Ma, L. Zhang, and X. Lu, Macromol. Rapid Commun. 28, 281 (2007).

    Article  Google Scholar 

  26. Z. Yang, H. Pu, and J. Yin, J. Colloid Interface Sci. 292, 108 (2005).

    Article  Google Scholar 

  27. A.C. Sonavane, A.I. Inamdar, H.P. Deshmukh, and P.S. Patil, J. Phys. D Appl. Phys. 43, 315102 (2010).

    Article  Google Scholar 

  28. J. Arias-Pardilla, P.A. Giménez-Gómez, A. de la Peña, J.L. Segura, and T.F. Otero, J. Mater. Chem. 22, 4944 (2012).

    Article  Google Scholar 

  29. F. Tran-Van, C. Vancaeyzeele, T. Henri, J.V. Grazulevicius, and C. Chevrot, Mater. Res. Soc. Symp. Proc. 708, 329 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanxin Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, S., Li, S., Zhang, X. et al. Synthesis and Performance of Highly Stable Star-Shaped Polyaniline Electrochromic Materials with Triphenylamine Core. J. Electron. Mater. 47, 1167–1175 (2018). https://doi.org/10.1007/s11664-017-5901-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5901-2

Keywords

Navigation