Skip to main content
Log in

Controlling Surface Morphology and Circumventing Secondary Phase Formation in Non-polar m-GaN by Tuning Nitrogen Activity

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

For the development of non-polar nitrides based optoelectronic devices, high-quality films with smooth surfaces, free of defects or clusters, are critical. In this work, the mechanisms governing the topography and single phase epitaxy of non-polar m-plane gallium nitride (m-GaN) thin films are studied. The samples were grown using plasma-assisted molecular beam epitaxy on m-plane sapphire substrates. Growth of pure m-GaN thin films, concomitant with smooth surfaces is possible at low radio frequency powers and high growth temperatures as judged by the high resolution x-ray diffraction, field emission scanning electron microscopy, and atomic force microscopy measurements. Defect types and densities are quantified using transmission electron microscopy, while Raman spectroscopy was used to analyze the in-plane stress in the thin films which matches the lattice mismatch analysis. Energy dispersive spectroscopy and cathodoluminescence support a congruent growth and a dominant near band edge emission. From the analysis, a narrow growth window is discovered wherein epitaxial growth of pure m-plane GaN samples free of secondary phases with narrow rocking curves and considerable smooth surfaces are successfully demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Kung, Optoelectron. Devices {III} Nitrides, ed. M. Razeghi and M. Henini (Oxford: Elsevier, 2005), pp. 9–22.

    Chapter  Google Scholar 

  2. S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).

    Article  Google Scholar 

  3. M.T. Hardy, D.F. Feezell, S.P. Denbaars, and S. Nakamura, Mater. Today 14, 408 (2011).

  4. C. Skierbiszewski, P. Perlin, I. Grzegory, Z.R. Wasilewski, M. Siekacz, A. Feduniewicz, P. Wisniewski, J. Borysiuk, P. Prystawko, G. Kamler, T. Suski, and S. Porowski, Semicond. Sci. Technol. 20, 809 (2005).

    Article  Google Scholar 

  5. U.K. Mishra, P. Parikh, and Y.-F. Wu, Proc. IEEE 90, 1022 (2002).

    Article  Google Scholar 

  6. R. Kirste, N. Rohrbaugh, I. Bryan, Z. Bryan, R. Collazo, and A. Ivanisevic, Annu. Rev. Anal. Chem. 8, 149 (2015).

    Article  Google Scholar 

  7. J.S. Speck and S.F. Chichibu, MRS Bull. 34, 304 (2009).

    Article  Google Scholar 

  8. P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K.H. Ploog, Nature 406, 865 (2000).

    Article  Google Scholar 

  9. B.A. Haskell, A. Chakraborty, F. Wu, H. Sasano, P.T. Fini, S.P. Denbaars, J.S. Speck, and S. Nakamura, J. Electron. Mater. 34, 357 (2005).

    Article  Google Scholar 

  10. N.F. Gardner, J.C. Kim, J.J. Wierer, Y.C. Shen, and M.R. Krames, Appl. Phys. Lett. 86, 111101 (2005).

    Article  Google Scholar 

  11. M.M.C. Chou, C. Chen, D.R. Hang, and W.T. Yang, Thin Solid Films 519, 5066 (2011).

    Article  Google Scholar 

  12. W. Yang, W. Wang, Z. Liu, Y. Lin, S. Zhou, H. Qian, and G. Li, CrystEngComm 17, 1073 (2015).

    Article  Google Scholar 

  13. T. Wernicke, S. Ploch, V. Hoffmann, A. Knauer, M. Weyers, and M. Kneissl, Phys. Status Solidi Basic Res. 248, 574 (2011).

    Article  Google Scholar 

  14. J. Shao, D.N. Zakharov, C. Edmunds, O. Malis, and M.J. Manfra, Appl. Phys. Lett. 103, 232103 (2013).

    Article  Google Scholar 

  15. M. Sawicka, H. Turski, M. Siekacz, J. Smalc-Koziorowska, M. Kryśko, I. Dziȩcielewski, I. Grzegory, and C. Skierbiszewski, Phys. Rev. B Condens. Matter Mater. Phys. 83, 245434 (2011).

    Article  Google Scholar 

  16. M. Sawicka, A. Feduniewicz-Żmuda, H. Turski, M. Siekacz, S. Grzanka, M. Kryśko, I. Dzięcielewski, I. Grzegory, and C. Skierbiszewski, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 29, 03C135 (2011).

    Article  Google Scholar 

  17. H.J. Lee, K. Fujii, T. Goto, T. Yao, and J. Chang, Appl. Phys. Lett. 98, 71904 (2011).

    Article  Google Scholar 

  18. J. Shao, L. Tang, C. Edmunds, G. Gardner, O. Malis, and M. Manfra, J. Appl. Phys. 114, 23508 (2013).

    Article  Google Scholar 

  19. S. Mukundan, L. Mohan, G. Chandan, B. Roul, and S.B. Krupanidhi, J. Appl. Phys. 116, 204502 (2014).

    Article  Google Scholar 

  20. B.M. McSkimming, C. Chaix, and J.S. Speck, J. Vac. Sci. Technol. A 33, 05E128 (2015).

    Article  Google Scholar 

  21. J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge: Cambridge University Press, 2005).

    Google Scholar 

  22. T.J. Baker, B.A. Haskell, F. Wu, P.T. Fini, J.S. Speck, and S. Nakamura, Jpn. J. Appl. Phys. 44, L920 (2005).

    Article  Google Scholar 

  23. L. Lahourcade, E. Bellet-Amalric, E. Monroy, M. Abouzaid, and P. Ruterana, Appl. Phys. Lett. 90, 2005 (2007).

    Article  Google Scholar 

  24. T. Uchiyama, S. Takeuchi, S. Kamada, T. Arauchi, Y. Hashimoto, K. Yamane, N. Okada, Y. Imai, S. Kimura, K. Tadatomo, and A. Sakai, Jpn. J. Appl. Phys. 53, 35502 (2014).

    Article  Google Scholar 

  25. M.A. Moram and M.E. Vickers, Rep. Prog. Phys. 72, 36502 (2009).

    Article  Google Scholar 

  26. T.C. Shibin Krishna, N. Aggarwal, G.A. Reddy, P. Dugar, M. Mishra, L. Goswami, N. Dilawar, M. Kumar, K.K. Maurya, and G. Gupta, RSC Adv. 5, 73261 (2015).

    Article  Google Scholar 

  27. M. Kaneko, T. Kimoto, and J. Suda, Appl. Phys. Express 9, 25502 (2016).

    Article  Google Scholar 

  28. V. Kirchner, H. Heinke, U. Birkle, S. Einfeldt, D. Hommel, H. Selke, and P. Ryder, Phys. Rev. B 58, 15749 (1998).

    Article  Google Scholar 

  29. B.M. McSkimming, F. Wu, T. Huault, C. Chaix, and J.S. Speck, J. Cryst. Growth 386, 168 (2014).

    Article  Google Scholar 

  30. Y.J. Sun, O. Brandt, and K.H. Ploog, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 21, 1350 (2003).

    Article  Google Scholar 

  31. H. Okumura, B.M. McSkimming, T. Huault, C. Chaix, and J.S. Speck, Appl. Phys. Lett. 104, 1 (2014).

    Article  Google Scholar 

  32. S.W. Kaun, M.H. Wong, U.K. Mishra, and J.S. Speck, Semicond. Sci. Technol. 28, 74001 (2013).

    Article  Google Scholar 

  33. J.K. Tsai, I. Lo, K.L. Chuang, L.W. Tu, J.H. Huang, C.H. Hsieh, and K.Y. Hsieh, J. Appl. Phys. 95, 460 (2004).

    Article  Google Scholar 

  34. J.M. Wagner and F. Bechstedt, Appl. Phys. Lett. 77, 346 (2000).

    Article  Google Scholar 

  35. T. Wei, R. Duan, J. Wang, J. Li, Z. Huo, J. Yang, and Y. Zeng, Jpn. J. Appl. Phys. 47, 3346 (2008).

    Article  Google Scholar 

  36. D. Gogova, P.P. Petrov, M. Buegler, M.R. Wagner, C. Nenstiel, G. Callsen, M. Schmidbauer, R. Kucharski, M. Zajac, R. Dwilinski, M.R. Phillips, A. Hoffmann, and R. Fornari, J. Appl. Phys. 113, 203513 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Science and Technology, Taiwan, ROC. NSC 102-2112-M-110-004-MY3 and MOST 105-2112-M-110-005 are for PVW and LWT and MOST 103-2112-M-110-003 and MOST 104-2221-E-110-063 are for QYC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. W. Tu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 617 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, C.W., Wadekar, P.V., Guo, S.S. et al. Controlling Surface Morphology and Circumventing Secondary Phase Formation in Non-polar m-GaN by Tuning Nitrogen Activity. J. Electron. Mater. 47, 359–367 (2018). https://doi.org/10.1007/s11664-017-5773-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5773-5

Keywords

Navigation