Skip to main content

Advertisement

Log in

H2 Production Under Visible Light Irradiation from Aqueous Methanol Solution on CaTiO3:Cu Prepared by Spray Pyrolysis

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Perovskite-type photocatalysts of CaCu x Ti1−x O3 (0 ≤ x ≤ 0.02) powder were prepared by spray pyrolysis of aqueous solution or aqueous solution with polymeric additive. The effects of the amount of copper ions doped in the photocatalyst and the precursor type on the photocatalytic activity under visible-light irradiation were investigated. The crystal structure, oxidation state, and light adsorption properties of the prepared photocatalysts were analyzed using x-ray diffraction, x-ray photoelectron spectroscopy, and diffuse reflectance spectroscopy, respectively. The doping of copper ions in CaTiO3 allowed visible-light absorption owing to a narrowing of the band gap energy of the host material through the formation of a new donor level for copper ions. Among the doped samples prepared from the aqueous precursor, CaTiO3 doped with 1 mol.% copper ions had the highest hydrogen evolution rate (140.7 μmol g−1 h−1). Notably, the hydrogen evolution rate of the photocatalyst doped with 1 mol.% copper ions prepared from the aqueous precursor with polymeric additive (295.0 μmol g−1 h−1) was two times greater than that prepared from the aqueous precursor, due to the morphology effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda, Nature 238, 37 (1972).

    Article  Google Scholar 

  2. K. Domen, A. Kudo, and T. Onishi, J. Phys. Chem. 90, 292 (1986).

    Article  Google Scholar 

  3. H. Kato and A. Kudo, J. Phys. Chem. B 105, 4285 (2001).

    Article  Google Scholar 

  4. T. Thananatthanachon, J. Chem. Educ. 93, 1120 (2016).

    Article  Google Scholar 

  5. M. Danaie, D. Kepaptsoglou, Q.M. Ramasse, C. Ophus, K.R. Whittle, S.M. Lawson, S. Pedrazzini, N.P. Young, P.A.J. Bagot, and P.D. Edmondson, Inorg. Chem. 55, 9937 (2016).

    Article  Google Scholar 

  6. M. Surendar, T.V. Sagar, G. Raveendra, M.A. Kumar, N. Lingaiah, K.S. Rama Rao, and P.S.S. Prasad, Int. J. Hydrog. Energy 41, 2285 (2016).

    Article  Google Scholar 

  7. H.S. Kushwaha, N.A. Madhar, B. Ilahi, P. Thomas, A. Halder, and R. Vaish, Sci. Rep. (2016). doi:10.1038/srep18557.

    Google Scholar 

  8. H.S. Kushwaha, P. Thomas, and R. Vaish, RSC Adv. 5, 87241 (2015).

    Article  Google Scholar 

  9. A. Sen and K.K. Chattopadhyay, J. Mater. Sci. Mater. Electron. 27, 10393 (2016).

    Article  Google Scholar 

  10. H. Mizoguchi, K. Ueda, M. Orita, S.C. Moon, K. Kajihara, M. Hirano, and H. Hosono, Mater. Res. Bull. 37, 2401 (2002).

    Article  Google Scholar 

  11. S.W. Bae, P.H. Borse, and J.S. Lee, Appl. Phys. Lett. 92, 104107 (2008).

    Article  Google Scholar 

  12. T. Ishii, H. Kato, and A. Kudo, J. Photochem. Photobiol. A Chem. 163, 181 (2004).

    Article  Google Scholar 

  13. R. Konta, T. Ishii, H. Kato, and A. Kudo, J. Phys. Chem. B 108, 8992 (2004).

    Article  Google Scholar 

  14. Z.G. Yi and J.H. Ye, Appl. Phys. Lett. 91, 254108 (2007).

    Article  Google Scholar 

  15. Z. Li, Y. Wang, J. Liu, G. Chen, Y. Li, and C. Zhou, Int. J. Hydrog. Energy 34, 147 (2009).

    Article  Google Scholar 

  16. S. Nishimoto, M. Matsuda, and M. Miyake, Chem. Lett. 35, 308 (2006).

    Article  Google Scholar 

  17. J.S. Jang, P.H. Borse, J.S. Lee, K.T. Lim, O.S. Jung, E.D. Jeong, J.S. Bae, and H.G. Kim, Bull. Korean Chem. Soc. 32, 95 (2011).

    Article  Google Scholar 

  18. R. Sasikala, V. Sudarsan, C. Sudakar, R. Naik, T. Sakuntala, and S.R. Bharadwaj, Int. J. Hydrog. Energy 33, 4966 (2008).

    Article  Google Scholar 

  19. H. Zhang, G. Chen, Y. Li, and Y. Teng, Int. J. Hydrog. Energy 35, 2713 (2010).

    Article  Google Scholar 

  20. W.H. Lin, C. Cheng, C.C. Hu, and H. Teng, Appl. Phys. Lett. 89, 211904 (2006).

    Article  Google Scholar 

  21. K. Sue, S. Kawasaki, T. Sato, D.N. Hamane, Y. Hakuta, and T. Furuya, Ind. Eng. Chem. Res. 55, 7628 (2016).

    Article  Google Scholar 

  22. A. Kudo and Y. Miseki, Chem. Soc. Rev. 38, 253 (2009).

    Article  Google Scholar 

  23. K.B. Jaimy, S. Ghosh, S. Sankar, and K.G.K. Warrier, Mater. Res. Bull. 46, 914 (2011).

    Article  Google Scholar 

  24. Y. Liu, L. Xie, Y. Li, R. Yang, J. Qu, Y. Li, and X. Li, J. Power Sources 183, 701 (2008).

    Article  Google Scholar 

  25. H.W. Kang, S.N. Lim, S.B. Park, and A.A. Park, Int. J. Hydrog. Energy 38, 6323 (2013).

    Article  Google Scholar 

  26. H.W. Kang, S.N. Lim, and S.B. Park, Int. J. Hydrog. Energy 37, 4026 (2012).

    Article  Google Scholar 

  27. D.S. Jung, S.B. Park, and Y.C. Kang, Korean J. Chem. Eng. 27, 1621 (2010).

    Article  Google Scholar 

  28. T.L. Barr and S. Seal, J. Vac. Sci. Technol. A 13, 1239 (1995).

    Article  Google Scholar 

  29. H.W. Slamet, E.P. Nasution, S. Kosela, and J. Gunlazuardi, Catal. Commun. 6, 213 (2005).

    Google Scholar 

  30. A. Alzahrani and A. Samokhvalov, J. Porous Mater. (2017). doi:10.1007/s10934-016-0354-1.

    Google Scholar 

  31. K. Sridharan, E. Jang, and T.J. Park, Appl. Catal. B Environ. 142–143, 718 (2013).

    Article  Google Scholar 

  32. A.P. Singh, S. Kumari, R. Shrivastav, S. Dass, and V.R. Satangi, Int. J. Hydrog. Energy 33, 5363 (2008).

    Article  Google Scholar 

  33. D. Jing, Y. Zhang, and L. Guo, Chem. Phys. Lett. 415, 74 (2005).

    Article  Google Scholar 

  34. X. Zhou, J. Shi, and C. Li, J. Phys. Chem. C 115, 8305 (2011).

    Article  Google Scholar 

  35. H.S. Kang, Y.C. Kang, H.Y. Koo, S.H. Ju, D.Y. Kim, S.K. Hong, J.R. Son, K.Y. Jung, and S.B. Park, Mater. Sci. Eng. B 127, 99 (2006).

    Article  Google Scholar 

  36. J. Liqiang, S. Xiaojun, X. Baifu, W. Baidqi, C. Weimin, and F. Honggang, J. Solid State Chem. 177, 3375 (2004).

    Article  Google Scholar 

  37. Q. Zhang, L. Gao, and J. Guo, Appl. Catal. B Environ. 26, 207 (2000).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by Korea Institute of Industrial Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki Young Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, S.N., Song, S.A., Jeong, YC. et al. H2 Production Under Visible Light Irradiation from Aqueous Methanol Solution on CaTiO3:Cu Prepared by Spray Pyrolysis. J. Electron. Mater. 46, 6096–6103 (2017). https://doi.org/10.1007/s11664-017-5551-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5551-4

Keywords

Navigation