Skip to main content
Log in

Electrical Properties of Dilute Nitride GaAsPN/GaPN MQW pin Diode

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, the electrical properties of dilute nitride GaAsPN/GaPN multi-quantum well pin diodes were investigated by using current–voltage (IV) measurements at room temperature. The diode structure was grown on silicon (Si) (100) substrate misoriented by 4° towards the [110] direction using the molecular beam epitaxy technique, and ohmic contacts were formed on this structure by metallization process. The forward bias IV characteristics of the diode were analyzed by the thermionic emission theory. Ideality factor (n), barrier height (Φb) and series resistance (R s), which are the main electrical parameters of diodes, were determined from IV characteristic, Norde and Cheung methods. The obtained experimental results were compared with each other. From the IV characteristic, the values of n and Φb were found to be 2.86 eV and 0.69 eV, respectively. The barrier height values, which were obtained from the Norde function and IV characteristic, were in good agreement with each other. It was also found that the values of series resistance determined from the Norde and Cheung functions were compatible with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kuyyalil, T. Nguyen Thanh, T. Quinci, S. Almosni, A. Létoublon, T. Rohel, N. Bertru, A. Le Corre, O. Durand, and C. Cornet, J. Cryst. Growth 377, 17 (2013).

    Article  Google Scholar 

  2. W.M. Chen, I.A. Buyanova, C.W. Tu, and H. Yonezu, Phys. B 376–377, 545 (2006).

    Article  Google Scholar 

  3. M. Henini, Dilute Nitride Semiconductors, 1st ed. (Oxford: Elsevier, 2005).

    Google Scholar 

  4. W.M. McGee, P.A. Bone, R.S. Williams, and T.S. Jones, Appl. Phys. Lett. 87, 181905 (2005).

    Article  Google Scholar 

  5. J. Chamings, S. Ahmed, A.R. Adams, S.J. Sweeney, V.A. Odnoblyudov, C.W. Tu, B. Kunert, and W. Stolz, Phys. Status Solidi B 246, 527 (2009).

    Article  Google Scholar 

  6. J. Chamings, S. Ahmed, S.J. Sweeney, V.A. Odnoblyudov, and C.W. Tu, Appl. Phys. Lett. 92, 021101 (2009).

    Article  Google Scholar 

  7. D. Tang, G.K. Vijaya, A. Mehrotra, A. Freundlich, and D.J. Smith, J. Vac. Sci. Technol. B 34, 011210 (2016).

    Article  Google Scholar 

  8. B. Kunert, D. Trusheim, V. Voßebürger, K. Volz, and W. Stolz, Phys. Status Solidi A 205, 114 (2008).

    Article  Google Scholar 

  9. J.M. Tilli, H. Jussila, K.M. Yu, T. Huhtio, and M. Sopanen, J. Appl. Phys. 115, 203102 (2014).

    Article  Google Scholar 

  10. A.Y. Egorov, N.V. Kryzhanovskaya, and M.S. Sobolev, Semiconductors 45, 1164 (2011).

    Article  Google Scholar 

  11. C. Robert, A. Bondi, T. Nguyen Thanh, J. Even, C. Cornet, O. Durand, J.P. Burin, J.M. Jancu, W. Guo, A. Létoublon, H. Folliot, S. Boyer-Richard, M. Perrin, N. Chevalier, O. Dehaese, K. Tavernier, S. Loualiche, and A. Le Corre, Appl. Phys. Lett. 98, 251110 (2011).

    Article  Google Scholar 

  12. T. Nguyen Thanh, C. Robert, W. Guo, A. Létoublon, C. Cornet, G. Elias, A. Ponchet, T. Rohel, N. Bertru, A. Balocchi, O. Durand, J.S. Micha, M. Perrin, S. Loualiche, X. Marie, and A. Le Corre, J. Appl. Phys. 112, 053521 (2012).

    Article  Google Scholar 

  13. S. Almosni, P. Rale, C. Cornet, M. Perrin, L. Lombez, A. Letoublon, K. Tavernier, C. Levallois, T. Rohel, N. Bertru, J.F. Guillemoles, and O. Durand, Sol. Energy Mater. Sol. Cells 147, 53 (2016).

    Article  Google Scholar 

  14. A. Rolland, L. Pedesseau, J. Even, S. Almosni, C. Robert, C. Cornet, J.M. Jancu, J. Benhlal, O. Durand, A. Le Corre, P. Rale, L. Lombez, J.F. Guillemoles, E. Tea, and S. Laribi, Opt. Quantum Electron. 46, 1397 (2014).

    Article  Google Scholar 

  15. B. Kunert, K. Volz, J. Koch, and W. Stolz, Appl. Phys. Lett. 88, 182108 (2006).

    Article  Google Scholar 

  16. P. Seoung-Hwan and A. Doyeol, IEEE J. Sel. Top. Quantum Electron. 21, 153 (2015).

    Article  Google Scholar 

  17. D. Dagnelund, J. Stehr, AYu Egorov, W.M. Chen, and I.A. Buyanova, Appl. Phys. Lett. 102, 021910 (2013).

    Article  Google Scholar 

  18. M. Fox, Optical Properties of Solids, 1st ed. (New York: Oxford University Press, 2001).

    Google Scholar 

  19. S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed. (New Jersey: Wiley, 2006).

    Book  Google Scholar 

  20. I. Safonov, A. Shulika, I. Sukhoivanov, and V. Lysak, Proc. SPIE 5594, 33 (2004).

    Article  Google Scholar 

  21. B.R. Nag, Physics of Quantum Well Devices, 1st ed. (Dordrecht: Kluwer, 2000).

    Google Scholar 

  22. M. Paxman, J. Nelson, B. Braun, J. Connolly, K.W.J. Barnham, C.T. Foxon, and J.S. Roberts, J. Appl. Phys. 74, 614 (1993).

    Article  Google Scholar 

  23. H.M. Khalil, B. Royall, S. Mazzucato, and N. Balkan, Nanoscale Res. Lett. 7, 539 (2012).

    Article  Google Scholar 

  24. Y. Kawamura, K. Wakita, H. Asahi, and K. Kurumada, Jpn. J. Appl. Phys. 25, L928 (1986).

    Article  Google Scholar 

  25. J. Han, M.H. Crawford, R.J. Shul, J.J. Figiel, M. Banas, L. Zhang, Y.K. Song, H. Zhou, and A.V. Nurmikko, Appl. Phys. Lett. 73, 1688 (1998).

    Article  Google Scholar 

  26. D.A. Browne, B. Mazumder, Y.R. Wu, and J.S. Speck, J. Appl. Phys. 117, 185703 (2015).

    Article  Google Scholar 

  27. Y. Furukawa, H. Yonezu, K. Ojima, K. Samonji, Y. Fujimoto, K. Momose, and K. Aiki, Jpn. J. Appl. Phys. Part 1 41, 528 (2002).

    Article  Google Scholar 

  28. G.K. Vijaya, A. Freundlich, D. Tang, and D.J. Smith, J. Vac. Sci. Technol. B 33, 031209 (2015).

    Article  Google Scholar 

  29. B. Kınacı, Y. Özen, T. Asar, S.Ş. Çetin, T. Memmedli, M. Kasap, and S. ÖzÇelik, J. Mater. Sci. Mater. Electron. 24, 3269 (2013).

    Article  Google Scholar 

  30. K. Yamane, T. Kawai, Y. Furukawa, H. Okada, A. Wakahara, and J. Crys, Growth 312, 2179 (2010).

    Article  Google Scholar 

  31. H. Yonezu, Y. Furukawa, A. Wakahara, and J. Crys, Growth 310, 4757 (2008).

    Article  Google Scholar 

  32. K. Umeno, Y. Furukawa, A. Wakahara, R. Noma, H. Okada, H. Yonezu, Y. Takagi, H. Kan, and J. Crys, Growth 311, 1748 (2009).

    Article  Google Scholar 

  33. M.S. Sobolev, A.A. Lazarenko, E.V. Nikitina, E.V. Pirogov, A.S. Gudovskikh, and A. Yu Egorov, Semiconductors 49, 559 (2015).

    Article  Google Scholar 

  34. K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, W. Stolz, and J. Crys, Growth 315, 37 (2011).

    Article  Google Scholar 

  35. A. Utsumi, Y. Furukawa, H. Yonezu, A. Wakahara, and J. Crys, Growth 295, 12 (2006).

    Article  Google Scholar 

  36. A. Utsumi, H. Yonezu, Y. Furukawa, K. Momose, and K. Kuroki, Phys. Status Solidi C 2741 (2003). doi:10.1002/ pssc.200303346.

  37. Y. Takagi, H. Yonezu, K. Samonji, T. Tsuji, N. Ohshima, and J. Crys, Growth 187, 42 (1998).

    Article  Google Scholar 

  38. A. Ishizaka and Y. Shiraki, J. Electrochem. Soc. 133, 666 (1986).

    Article  Google Scholar 

  39. E.H. Rhoderick and R.H. Williams, Metal-Semiconductor Contacts, 2nd ed. (New York: Clarendon, 1988).

    Google Scholar 

  40. H.C. Card and E.H. Rhoderick, J. Phys. D Appl. Phys. 4, 1589 (1971).

    Article  Google Scholar 

  41. R.T. Tung, Phys. Rev. B. 64, 2055310 (2001).

    Article  Google Scholar 

  42. S. Alialy, Ş. Altındal, E.E. Tanrıkulu, and D.E. Yıldız, J. Appl. Phys. 116, 083709 (2014).

    Article  Google Scholar 

  43. A. Tataroglu and F.Z. Pur, Phys. Scr. 88, 014801 (2013).

    Article  Google Scholar 

  44. M. Mamor, K. Bouziane, A. Tirbiyine, and H. Alhamrashdi, Superlattices Microstruct. 72, 344 (2014).

    Article  Google Scholar 

  45. E. Elgazzar, A. Tataroğlu, A.A. Al-Ghamdi, Y. Al-Turki, W.A. Farooq, F. El-Tantawy, and F. Yakuphanoglu, Appl. Phys. A 122, 617 (2016).

    Article  Google Scholar 

  46. A. Chitnis, A. Kumar, M. Shatalov, V. Adivarahan, A. Lunev, J.W. Yang, G. Simin, M.A. Khan, R. Gaska, and M. Shur, Appl. Phys. Lett. 77, 3800 (2000).

    Article  Google Scholar 

  47. J.M. Shah, Y.L. Li, T. Gessmann, and E.F. Schubert, J. Appl. Phys. 94, 2627 (2003).

    Article  Google Scholar 

  48. H. Norde, J. Appl. Phys. 50, 5052 (1979).

    Article  Google Scholar 

  49. K.E. Bohlin, J. Appl. Phys. 60, 1223 (1986).

    Article  Google Scholar 

  50. S.K. Cheung and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986).

    Article  Google Scholar 

  51. A. Tataroğlu, Chin. Phys. B 22, 068402 (2013).

    Article  Google Scholar 

  52. A.A. Kumar, L.D. Rao, V.R. Reddy, and C.J. Choi, Curr. Appl. Phys. 13, 975 (2013).

    Article  Google Scholar 

  53. M. Sochacki, A. Kolendo, J. Szmidt, and A. Werbowy, Solid State Electron. 49, 585 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under Project Number 114F224. Also, this work was supported by the Republic of Turkey Ministry of Development under Project Numbers 2011K120290 and 2016K121220.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sertel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sertel, T., Ozen, Y., Tataroglu, A. et al. Electrical Properties of Dilute Nitride GaAsPN/GaPN MQW pin Diode. J. Electron. Mater. 46, 4590–4595 (2017). https://doi.org/10.1007/s11664-017-5460-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5460-6

Keywords

Navigation