Skip to main content
Log in

A High-Sensitivity Gas Sensor Toward Methanol Using ZnO Microrods: Effect of Operating Temperature

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the present work, zinc oxide (ZnO) microrods with the average diameter of 350 nm have been synthesized on fluorine doped tin oxide (FTO) substrate using a hydrothermal reaction process at a low temperature of 90°C. The methanol gas sensing behaviour of as-synthesized ZnO microrods have been studied at different operating temperatures (100–300°C). The gas sensing results show that the ZnO microrods exhibit excellent sensitivity, selectivity, and stability toward methanol gas at 300°C. The as-grown ZnO microrods sensor also shows the good sensitivity for methanol even at a low operating temperature of 100°C. The ultra-high sensitivity of 4.41 × 104% [gas sensitivity, S g = (I g − I a)/I a × 100%] and 5.11 × 102% to 100 ppm methanol gas at a temperature of 300°C and 100°C, respectively, has been observed. A fast response time of 200 ms and 270 ms as well as a recovery time of 120 ms and 1330 ms to methanol gas have also been found at an operating temperature of 300°C and 100°C, respectively. The response and recovery time decreases with increasing operation temperature of the sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.G. Patel, P.D. Patel, and V.S. Vaishnav, Sens. Actuators B 96, 180 (2003).

    Article  Google Scholar 

  2. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nat. Mater. 4, 42 (2005).

    Article  Google Scholar 

  3. S.C. Pillai, J.M. Kelly, R. Ramesh, and D.E. McCormack, J. Mater. Chem. C 1, 3268 (2013).

    Article  Google Scholar 

  4. N.F. Cooray, K. Kushiya, and A. Fujimaki, Jap. J. Appl. Phys. 38, 6213 (1999).

    Article  Google Scholar 

  5. R. Paneva and D. Gotchev, Sens. Actuators A 72, 79 (1999).

    Article  Google Scholar 

  6. O.K. Varghese, L.K. Malhotra, and G.L. Sharma, Sens. Actuators B 55, 161 (1999).

    Article  Google Scholar 

  7. H. Steffes, C. Imawan, F. Solzbacher, and E. Obermeier, Sens. Actuators B 68, 249 (2000).

    Article  Google Scholar 

  8. M. Epifani, R. Díaz, J. Arbiol, E. Comini, N. Sergent, T. Pagnier, P. Siciliano, G. Faglia, and J.R. Morante, Adv. Funct. Mater. 16, 1488 (2006).

    Article  Google Scholar 

  9. S. Aukkaravittayapun, N. Wongtida, T. Kasecwatin, S. Charojrochkul, K. Unnanon, and P. Chindaudom, Thin Solid Films 496, 117 (2006).

    Article  Google Scholar 

  10. T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, Anal. Chem. 34, 1502 (1962).

    Article  Google Scholar 

  11. M. Sinha, R. Mahapatra, B. Mondal, T. Maruyama, and R. Ghosh, J. Phys. Chem. C 120, 3019 (2016).

    Article  Google Scholar 

  12. S. Rattan and V.K. Anand, Int. J. Emerg. Tech. Eng. 1, 204 (2014).

    Google Scholar 

  13. S. Wang, P. Wang, Z. Li, C. Xiao, B. Xiao, R. Zhao, T. Yang, and M. Zhamg, RSC Adv. 4, 35375 (2014).

    Article  Google Scholar 

  14. Y.S. Shim, H.G. Moon, D.H. Kim, L.H. Zhang, S.J. Yoon, Y.S. Yoon, C.Y. Kang, and H.W. Jang, RSC Adv. 3, 10452 (2013).

    Article  Google Scholar 

  15. W. Tang, J. Wang, P.J. Yao, and X.G. Li, Sens. Actuators B 192, 543 (2014).

    Article  Google Scholar 

  16. X.H. Liu, J. Zhang, L.W. Wang, T.L. Yang, X.Z. Guo, S.H. Wu, and S.R. Wang, J. Mater. Chem. 21, 349 (2011).

    Article  Google Scholar 

  17. J. Li, H. Fan, and X. Jia, J. Phys. Chem. C 114, 14684 (2010).

    Article  Google Scholar 

  18. X.G. Han, H.Z. He, Q. Kuang, X. Zhou, X.H. Zhang, T. Xu, Z.X. Xie, and L.S. Zheng, J. Phys. Chem. C 113, 584 (2009).

    Article  Google Scholar 

  19. H. Yi, I. Yasui, and Y. Shigesato, Jpn. J. Appl. Phys. 34, 1638 (1995).

    Article  Google Scholar 

  20. Y.V. Kaneti, Q.M.D. Zakaria, Z. Zhang, C. Chen, J. Yue, M. Liu, X. Jiang, and A. Yu, J. Mater. Chem. A 2, 13283 (2014).

    Article  Google Scholar 

  21. C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, Sensors 10, 2088 (2010).

    Article  Google Scholar 

  22. R. Ghosh and D. Basak, Appl. Phys. Lett. 90, 243106 (2007).

    Article  Google Scholar 

  23. S. Ren, G. Fan, S. Qu, and Q. Wang, J. Appl. Phys. 110, 084312 (2011).

    Article  Google Scholar 

  24. J.J. Hassan, M.A. Mahdi, C.W. Chin, H. Abu-Hassan, and Z. Hassan, Sen. Actuators B 176, 360 (2013).

    Article  Google Scholar 

  25. Z. Yang, Q. Liu, H.C. Yu, B. Zou, Y.G. Wang, and T.H. Wang, Nanotechnology 19, 035704 (2008).

    Article  Google Scholar 

  26. R.C. Pawar, J.S. Shaikh, A.V. Moholkar, S.M. Pawar, J.H. Kim, J.Y. Patil, S.S. Suryavanshi, and P.S. Patil, Sen. Actuators B 151, 212 (2010).

    Article  Google Scholar 

  27. L.S.R. Rocha, C.R. Foschini, C.C. Silva, E. Longo, and A.Z. Simões, Ceram. Int. 42, 4539 (2016).

    Article  Google Scholar 

  28. G. Korotcenkov, Mater. Sci. Eng. B 139, 1 (2007).

    Article  Google Scholar 

  29. P.P. Sahay and R.K. Nath, Sens. Actuators B 134, 654 (2008).

    Article  Google Scholar 

  30. C.C. Li, X.M. Yin, Q.H. Li, and T.H. Wang, Cryst. Engg. Comm. 13, 1557 (2011).

    Article  Google Scholar 

  31. D. Acharyya, N. Banerjee, and P. Bhattacharyya, IEEE Xplore (2014). doi:10.1109/ICSENS.2014.6985123.

    Google Scholar 

  32. G.J. Cadena, J. Riu, and F.X. Rius, Analyst 132, 1083 (2007).

    Article  Google Scholar 

  33. F. Hellegouarc’h, F. Arefi-Khonsari, R. Planade, and J. Amouroux, Sens. Actuators B 73, 27 (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ghosh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 604 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, M., Mahapatra, R., Mondal, B. et al. A High-Sensitivity Gas Sensor Toward Methanol Using ZnO Microrods: Effect of Operating Temperature. J. Electron. Mater. 46, 2476–2482 (2017). https://doi.org/10.1007/s11664-017-5316-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5316-0

Keywords

Navigation