Skip to main content
Log in

Fabrication and Characterization of Reactively Sputtered AlInGaN Films with a Cermet Target Containing 5% Al and 7.5% In

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

AlInGaN films were deposited at a substrate temperature in the range of 100–400°C and a radio frequency (RF) output power in the range of 90–150 W on Si (100) by reactive sputtering in an (Ar + N2) atmosphere. A (Ga + GaN) cermet target for sputtering, containing 5 at.% aluminum and 7.5 at.% indium powders, was made by hot pressing the mixed metal powders and ceramic GaN. The effects of substrate temperature and sputtering output power on the formation of AlInGaN films and their electrical and optical properties were investigated. X-ray diffraction results showed that AlInGaN films grew with a preferential m-(\(10\bar{1}0\)) growth plane and had a wurtzite crystal structure. The film roughness was influenced by the sputtering power and the film composition. The AlInGaN films deposited at 400°C and 150 W had the best crystallinity, and an electron concentration of 4.5 × 1017 cm−3, a Hall mobility of 497 cm2 V−1 s−1, and an optical bandgap (E g) of 2.71 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.B. Fehlberg, C.S. Gallinat, G.A. Umana-Membreno, G. Koblmuller, B.D. Nener, J.S. Speck, and G. Parish, J. Electron. Mater. 37, 593 (2008).

    Article  Google Scholar 

  2. J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).

    Article  Google Scholar 

  3. A. Yasan, R. McClintock, K. Mayes, S.R. Darvish, P. Kung, and M. Razeghi, Appl. Phys. Lett. 81, 801 (2002).

    Article  Google Scholar 

  4. G. Kipshidze, V. Kuryatkov, K. Zhu, B. Borisov, M. Holtz, S. Nikishin, and H. Temkin, J. Appl. Phys. 93, 1363 (2003).

    Article  Google Scholar 

  5. S.H. Baek, J.O. Kim, M.K. Kwon, I.K. Park, S.I. Na, J.Y. Kim, B.J. Kim, and S.J. Park, Ieee Photonic Tech. L 18, 1276 (2006).

    Article  Google Scholar 

  6. V. Adivarahan, A. Chitnis, J.P. Zhang, M. Shatalov, J.W. Yang, G. Simin, M.A. Khan, R. Gaska, and M.S. Shur, Appl. Phys. Lett. 79, 4240 (2001).

    Article  Google Scholar 

  7. T.-C. Wang, H.-C. Kuo, Z.-H. Lee, C.-C. Chuo, M.-Y. Tsai, C.-E. Tsai, T.-D. Lee, T.-C. Lu, and J. Chi, J. Cryst. Growth 287, 582 (2006).

    Article  Google Scholar 

  8. T. Oder, J. Li, J. Lin, and H. Jiang, Appl. Phys. Lett. 77, 791 (2000).

    Article  Google Scholar 

  9. F. McIntosh, K. Boutros, J. Roberts, S. Bedair, E. Piner, and N. El-Masry, Appl. Phys. Lett. 68, 40 (1996).

    Article  Google Scholar 

  10. M.A. Khan, J. Yang, G. Simin, R. Gaska, M. Shur, H.-C. zur Loye, G. Tamulaitis, A. Zukauskas, D.J. Smith, and D. Chandrasekhar, Appl. Phys. Lett. 76, 1161 (2000).

    Article  Google Scholar 

  11. J. Liu, Y. Wang, H. Yang, D. Jiang, U. Jahn, and K. Ploog, Appl. Phys. Lett. 84, 5449 (2004).

    Article  Google Scholar 

  12. Y. Liu, T. Egawa, H. Ishikawa, and T. Jimbo, J. Cryst. Growth 259, 245 (2003).

    Article  Google Scholar 

  13. T. Lim, R. Aidam, L. Kirste, P. Waltereit, R. Quay, S. Müller, and O. Ambacher, Appl. Phys. Lett. 96, 252108 (2010).

    Article  Google Scholar 

  14. H. Hahn, B. Reuters, A. Wille, N. Ketteniss, F. Benkhelifa, O. Ambacher, H. Kalisch, and A. Vescan, Semicond. Sci. Technol. 27, 055004 (2012).

    Article  Google Scholar 

  15. F. Lecourt, A. Agboton, N. Ketteniss, H. Behmenburg, N. Defrance, V. Hoel, H. Kalisch, A. Vescan, M. Heuken, and J.C. De Jaeger, IEEE Electr. Device L 34, 978 (2013).

    Article  Google Scholar 

  16. Y. Liu, H. Jiang, S. Arulkumaran, T. Egawa, B. Zhang, and H. Ishikawa, Appl. Phys. Lett. 86, 223510 (2005).

    Article  Google Scholar 

  17. Y. Liu, T. Egawa, and H. Jiang, Electron. Lett. 42, 884 (2006).

    Article  Google Scholar 

  18. R. Wang, G. Li, G. Karbasian, J. Guo, B. Song, Y. Yue, Z. Hu, O. Laboutin, Y. Cao, and W. Johnson, Ieee Electr. Device Lett. 34, 378 (2013).

    Article  Google Scholar 

  19. N. Ketteniss, L.R. Khoshroo, M. Eickelkamp, M. Heuken, H. Kalisch, R. Jansen, and A. Vescan, Semicond. Sci. Technol. 25, 075013 (2010).

    Article  Google Scholar 

  20. T. Matsuoka, N. Yoshimoto, T. Sasaki, and A. Katsui, J. Electron. Mater. 21, 157 (1992).

    Article  Google Scholar 

  21. M. Aumer, S. LeBoeuf, F. McIntosh, and S. Bedair, Appl. Phys. Lett. 75, 3315 (1999).

    Article  Google Scholar 

  22. J. Liu, B. Zhang, M. Wu, D. Li, J. Zhang, R. Jin, J. Zhu, J. Chen, J. Wang, and Y. Wang, J. Cryst. Growth 260, 388 (2004).

    Article  Google Scholar 

  23. C.B. Soh, W. Liu, S.J. Chua, S. Tripathy, and D.Z. Chi, J. Cryst. Growth 268, 478 (2004).

    Article  Google Scholar 

  24. S.J. Woo, O. Jitsuo, U. Kohei, K. Atsushi, and F. Hiroshi, Appl. Phys. Express 7, 085502 (2014).

    Article  Google Scholar 

  25. T. Watanabe, J. Ohta, T. Kondo, M. Ohashi, K. Ueno, A. Kobayashi, and H. Fujioka, Appl. Phys. Lett. 104, 182111 (2014).

    Article  Google Scholar 

  26. J.W. Shon, J. Ohta, K. Ueno, A. Kobayashi, and H. Fujioka, Sci. Rep. 4, 1 (2014).

    Article  Google Scholar 

  27. C.-C. Li and D.-H. Kuo, J. Mater. Sci. Mater. Electron. 25, 1404 (2014).

    Article  Google Scholar 

  28. C.-C. Li and D.-H. Kuo, J. Mater. Sci. Mater. Electron. 25, 1942 (2014).

    Article  Google Scholar 

  29. C.-C. Li, D.-H. Kuo, and Y.-S. Huang, Mater. Sci. Semicond. Process. 29, 170 (2015).

    Article  Google Scholar 

  30. C.-C. Li, D.-H. Kuo, P.-W. Hsieh, and Y.-S. Huang, J. Electron. Mater. 42, 2445 (2013).

    Article  Google Scholar 

  31. J.E. Northrup and J. Neugebauer, Phys. Rev. B 60, R8473 (1999).

    Article  Google Scholar 

  32. J.P. Ahl, J. Hertkorn, H. Koch, B. Galler, B. Michel, M. Binder, and B. Holländer, J. Cryst. Growth 398, 33 (2014).

    Article  Google Scholar 

  33. S.F. Yu, S.J. Chang, R.M. Lin, Y.H. Lin, Y.C. Lu, S.P. Chang, and Y.Z. Chiou, J. Cryst. Growth 312, 1920 (2010).

    Article  Google Scholar 

  34. Y. Li, J. Zhang, W. Wan, Y. Zhang, Y. Nie, J. Zhang, and Y. Hao, Phys. E 67, 77 (2015).

    Article  Google Scholar 

  35. S. Muthukumaran and R. Gopalakrishnan, Opt. Mater. 34, 1946 (2012).

    Article  Google Scholar 

  36. F. Wang, S.-S. Li, J.-B. Xia, H. Jiang, J. Lin, J. Li, and S.-H. Wei, Appl. Phys. Lett. 91, 061125 (2007).

    Article  Google Scholar 

  37. M. Zhu, X. Zhang, S. Wang, H. Yang, and Y. Cui, J. Mater. Sci. Lett. 26, 705 (2015).

    Google Scholar 

  38. J.Z. Shang, B.P. Zhang, C.M. Wu, L.E. Cai, J.Y. Zhang, J.Z. Yu, and Q.M. Wang, Appl. Surf. Sci. 255, 3350 (2008).

    Article  Google Scholar 

  39. H. Shinoda and N. Mutsukura, Thin Solid Films 516, 2837 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Hau Kuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, K., Kuo, DH. Fabrication and Characterization of Reactively Sputtered AlInGaN Films with a Cermet Target Containing 5% Al and 7.5% In. J. Electron. Mater. 46, 1948–1955 (2017). https://doi.org/10.1007/s11664-016-5157-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5157-2

Keywords

Navigation