Skip to main content
Log in

Thermoelectric Properties of Bi2Te3 Nanocrystals with Diverse Morphologies Obtained via Modified Hydrothermal Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Single-phase Bi2Te3 nanostructures (spherical and flower-like) have been synthesized using a modified hydrothermal method at different reaction temperatures (70°C, 100°C, and 150°C) and subsequently consolidated by spark plasma sintering. Their crystal structure, morphology, and thermoelectric and mechanical properties were investigated. The results suggest that the reaction temperature had a significant effect on the morphology and thermoelectric properties. The presence of nanostructures in bulk samples led to a remarkable decrease in thermal conductivity with a lesser effect on electrical conductivity. As a result, the figure␣of merit (ZT) of the spark-plasma-sintered sample processed from spherical nanoparticles reached 0.54 at 400 K. The Vickers microhardness of the bulk sample processed from spherical nanoparticles was higher than the best results found in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  2. S. Bensaid, M. Brignone, A. Ziggiotti, and S. Specchia, Int. J. Hydrogen Energy 37, 1385 (2012).

    Article  Google Scholar 

  3. J.P. Carmo, M.F. Silva, J.F. Ribeiro, R.F. Wolffen, P. Alpuim, J.G. Rocha, L.M. Goncalves, and J.H. Correia, Microsyst. Technol. 17, 1283 (2011).

    Article  Google Scholar 

  4. P. Dharmaiah, H.S. Kim, C.H. Lee, and S.J. Hong, J. Alloys Compd. 686, 1 (2016).

    Article  Google Scholar 

  5. C.B. Vining, Nature 423, 391 (2003).

    Article  Google Scholar 

  6. J.R. Szczech, J.M. Higgins, and S. Jin, J. Mater. Chem. 21, 4037 (2011).

    Article  Google Scholar 

  7. R.J. Mehta, Y. Zhang, C. Karthik, B. Singh, R.W. Siegel, T.B. Tasciuc, and G. Ramanath, Nat. Mater. 11, 233 (2012).

    Article  Google Scholar 

  8. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

    Article  Google Scholar 

  9. L.D. Zhao, V.P. Dravid, and M.G. Kanatzidis, Energy Environ. Sci. 7, 251 (2014).

    Article  Google Scholar 

  10. K. Biswas, J.Q. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Article  Google Scholar 

  11. D. Li, X.Y. Qin, Y.C. Dou, X.Y. Li, R.R. Sun, Q.Q. Wang, L.L. Li, H.X. Xin, N. Wang, N.N. Wang, C.J. Song, Y.F. Liu, and J. Zhang, Scr. Mater. 67, 161 (2012).

    Article  Google Scholar 

  12. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  Google Scholar 

  13. X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, and X.B. Zhang, Appl. Phys. Lett. 86, 062111 (2005).

    Article  Google Scholar 

  14. Y.Q. Cao, T.J. Zhu, and X.B. Zhao, J. Alloys Compd. 449, 109 (2008).

    Article  Google Scholar 

  15. A. Soni, Y.Y. Zhao, L.G. Yu, M.K.K. Aik, M.S. Dresselhaus, and Q.H. Xiong, Nano Lett. 12, 1203 (2012).

    Article  Google Scholar 

  16. F. Wu, H. Song, F. Gao, W. Shi, J. Jia, and X. Hu, J. Electron. Mater. 42, 6 (2013).

    Google Scholar 

  17. B. Zhou, B. Liu, L.P. Jiang, and J.J. Zhu, Ultrason. Sonochem. 14, 229 (2007).

    Article  Google Scholar 

  18. Y. Deng, C.W. Nan, and L. Guo, Chem. Phys. Lett. 383, 572 (2004).

    Article  Google Scholar 

  19. C. Yu, X. Zhang, M. Leng, A. Shaga, D. Liu, F. Chen, and C. Wang, J. Alloys Compd. 570, 86 (2013).

    Article  Google Scholar 

  20. W. Shi, F. Wu, K. Wang, J. Yang, H. Song, and X. Hu, J. Electron. Mater. 43, 9 (2014).

    Article  Google Scholar 

  21. X.B. Zhao, X.H. Ji, Y.H. Zhang, G.S. Cao, and J.P. Tu, Appl. Phys. A 80, 1567 (2005).

    Article  Google Scholar 

  22. H.J. Kim, M.K. Han, H.Y. Kim, W. Lee, and S.J. Kim, Bull. Korean Chem. Soc. 33, 3977 (2012).

    Article  Google Scholar 

  23. Y. Deng, C.W. Nan, G.D. Wei, L. Guo, and Y.H. Lin, Chem. Phys. Lett. 374, 410 (2003).

    Article  Google Scholar 

  24. S.Y. Song, J.P. Fu, X.Y. Li, W. Gao, and H.J. Zhang, Chem. Eur. J. 19, 2889 (2013).

    Article  Google Scholar 

  25. K. Wang, H.W. Liang, W.T. Yao, and S.H. Yu, J. Mater. Chem. 21, 15057 (2011).

    Article  Google Scholar 

  26. S. Wang, J. Yang, T. Toll, J. Yang, W. Zhang, and X. Tang, Sci. Rep. 5, 10136 (2015).

    Article  Google Scholar 

  27. L.P. Hu, T.J. Zhu, Y.G. Wang, H.H. Xie, Z.J. Xu, and X.B. Zhao, NPG Asia Mater. 6, 1 (2014).

    Google Scholar 

  28. Z.L. Du, T.J. Zhu, Y. Chen, J. He, H.L. Gao, G.Y. Jiang, T.M. Tritt, and X.B. Zhao, J. Mater. Chem. 22, 6838 (2012).

    Article  Google Scholar 

  29. S. Wang, H. Li, R. Lu, G. Zheng, and X. Tang, Nanotechnology 24, 285702 (2013).

    Article  Google Scholar 

  30. G.Q. Zhang, B. Kirk, L.A. Jauregui, H.R. Yang, X.F. Xu, Y.P. Chen, and Y. Wu, Nano Lett. 12, 56 (2012).

    Article  Google Scholar 

  31. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature (London) 413, 597 (2001).

    Article  Google Scholar 

  32. R. Aghababei, G. Anciaux, and J.F. Molinari, J. Appl. Phys. Lett. 105, 194102 (2014).

    Article  Google Scholar 

  33. M.H. Bhuiyan, T.S. Kim, J.M. Koo, and S.J. Hong, J. Alloys Compd. 509, 1722 (2011).

    Article  Google Scholar 

  34. L.D. Zhao, B.P. Zhang, J.F. Li, M. Zhou, W.S. Liu, and J. Liu, J. Alloys Compd. 455, 259 (2008).

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (NRF-2015R1D1A1A09060920).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Jik Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dharmaiah, P., Hong, SJ. Thermoelectric Properties of Bi2Te3 Nanocrystals with Diverse Morphologies Obtained via Modified Hydrothermal Method. J. Electron. Mater. 46, 3012–3019 (2017). https://doi.org/10.1007/s11664-016-5104-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5104-2

Keywords

Navigation