Skip to main content
Log in

Hybrid-Type Organic Thermoelectric Materials Containing Nanoparticles as a Carrier Transport Promoter

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) have recently received much attention as thermoelectric materials. Although the carrier mobility within a single CNT is very high, the charge carrier transport between CNTs is quite slow. We have utilized nanoparticles (NPs) for promotion of the carrier transport between CNTs for improving their thermoelectric performance. Poly(vinyl chloride) (PVC) was used as a binder of the CNTs. Thus, hybrid-type organic thermoelectric materials containing the NPs were constructed from Pd NPs, CNTs, and PVC. The thermoelectric properties were slightly improved in the three-component films by only mixing the separately-prepared Pd NPs. The NPs of a polymer complex, poly(nickel 1,1,2,2-ethenetetrathiolate) (n-PETT), were also used as a charge carrier transport promoter instead of the Pd NPs to produce n-PETT/CNT/PVC hybrid films. Treatment of the three-component films with methanol produced a high thermoelectric power factor and low thermal conductivity, resulting in a high “apparent” thermoelectric performance (ZT ∼ 0.3 near room temperature) although the thermal conductivity was measured in the through-plane direction, which is a different direction from that for the electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Bubnova and X. Crispin, Energy Environmental Sci. 5, 9345 (2012).

    Article  Google Scholar 

  2. R. Yue and J. Xu, Synth. Met. 162, 912 (2012).

    Article  Google Scholar 

  3. N. Toshima, Macromol. Symp. 186, 81 (2002).

    Article  Google Scholar 

  4. N. Toshima, Gendai Kagaku 532, 42 (2015).

    Google Scholar 

  5. H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, and A.J. Heeger, J. Chem. Soc. Chem. Comm. 1977, 578 (1977).

    Article  Google Scholar 

  6. H. Yan and N. Toshima, Chem. Lett. 1999, 1217 (1999).

    Article  Google Scholar 

  7. H. Yan, T. Ohta, and N. Toshima, Macromol. Mater. Eng. 286, 139 (2001).

    Article  Google Scholar 

  8. Y. Hiroshige, M. Ookawa, and N. Toshima, Synth. Met. 157, 467 (2007).

    Article  Google Scholar 

  9. O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlmen, M. Berggren, and X. Crispin, Nat. Mater. 10, 429 (2011).

    Article  Google Scholar 

  10. G.-H. Kim, L. Shao, K. Zhang, and K.P. Pipe, Nat. Mater. 12, 719 (2013).

    Article  Google Scholar 

  11. C. Yu, Y.-S. Kim, D. Kim, and J.C. Grunlan, Nano Lett. 8, 4428 (2008).

    Article  Google Scholar 

  12. D.Y. Kim, Y.-S. Kim, K.W. Choi, J.C. Grunlan, and C.-H. Yu, ACS Nao 4, 513 (2010).

    Article  Google Scholar 

  13. C. Cho , B. Stevens, J.-H. Hsu, R. Bureau, D.A. Hagen, O. Reger, C. Yu, and J. C. Grunlan. Adv. Mater. 27, 2996 (2015).

    Article  Google Scholar 

  14. N. Toshima, M. Imai, and S. Ichikawa, J. Electr. Mater. 40, 898 (2011).

    Article  Google Scholar 

  15. N. Toshima, N. Jiravanichanun, and H. Marutani, J. Electr. Mater. 41, 1735 (2012).

    Article  Google Scholar 

  16. N. Toshima and N. Jiravanichnun, J. Electr. Mater. 42, 1882 (2013).

    Article  Google Scholar 

  17. A. Yoshida and N. Toshima, J. Electr. Mater. 43, 1492 (2014).

    Article  Google Scholar 

  18. Y. Choi, Y. Kim, S.-G. Park, Y.-G. Kim, B.J. Sung, S.-Y. Jang, and W. Kim, Org. Electron. 12, 2122 (2011).

    Article  Google Scholar 

  19. K. Oshima, Y. Shiraishi, and N. Toshima, Chem. Lett. 44, 1185 (2015).

    Article  Google Scholar 

  20. N. Toshima, K. Oshima, H. Anno, T. Nishinaka, S. Ichikawa, A. Iwata, and Y. Shiraishi, Adv. Mater. 27, 2246 (2015).

    Article  Google Scholar 

  21. K. Kinoshita, Carbon-electrochemical and physicochemical properties (New York: Wiley Interscience, 1988).

    Google Scholar 

  22. H. Hirai, H. Chawanya, and N. Toshima, Reactive Polym. 3, 127 (1985).

    Google Scholar 

  23. A. Yoshida and N. Toshima, J. Electron. Mater. 45, 2914 (2016).

    Article  Google Scholar 

  24. Q. Wei, C. Uehara, M. Mukaida, K. Kirihara, and T. Ishida, AIP Adv. 6, 045315 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan, and Nippon ZEON Corporation, Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Toshima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oshima, K., Inoue, J., Sadakata, S. et al. Hybrid-Type Organic Thermoelectric Materials Containing Nanoparticles as a Carrier Transport Promoter. J. Electron. Mater. 46, 3207–3214 (2017). https://doi.org/10.1007/s11664-016-4888-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4888-4

Keywords

Navigation