Skip to main content
Log in

Reverse Optimization of an Integrated Solenoid Fluxgate Sensor Based on Co-based Amorphous Soft Magnetic Ribbon

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, based on the sensitivity empirical formula, the microsolenoid fluxgate sensor is designed in reverse by making use of optimized parameters. The fabricated microsolenoid fluxgate sensor with a Co-based amorphous ribbon core presents a best sensitivity of 3587 V/T, a power consumption of 20.35 mW, and a linear range of 0–100 μT. The test results show that the sensitivity of the sensor is in good agreement with the theoretical expectation, with an error lower than 4%. The improvement of the core material makes a major contribution to the high sensitivity. The noise power density of the sensor is 0.14 nT/√Hz@1 Hz at the frequency of 100 kHz and the noise rms level is 2.2 nT in the frequency range of 0.1–10 Hz. Reverse design provides a simple and rapid way to optimize the performance of the existing fluxgate sensor for different applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.A. Robertson, Electron. Lett. 36, 331 (2000).

    Article  Google Scholar 

  2. A. Baschirotto, E. Dallago, P. Malcovati, M. Marchesi, E. Melissano, M. Morelli, P. Siciliano, and G. Venchi, IEEE Trans. Instrum. Meas. 58, 3269 (2009).

    Article  Google Scholar 

  3. G. Velasco-Quesada, M. Roman-Lumbreras, A. Conesa-Roca, and F. Jerez, IEEE Sens. J. 11, 280 (2011).

    Article  Google Scholar 

  4. S. Choi, Y.K. Yoon, S.H. Kim, and M.G. Allen, J. Micromech. Microeng. 21, 045004 (2011).

    Article  Google Scholar 

  5. W.Y. Choi and J.O. Kim, Microsyst. Technol. 12, 350 (2006).

    Article  Google Scholar 

  6. P.M. Wu and C.H. Ahn, IEEE Sens. J. 8, 308 (2008).

    Article  Google Scholar 

  7. A. Baschirotto, F. Borghetti, E. Dallago, P. Malcovati, M. Marchesi, E. Melissano, P. Siciliano, and G. Venchi, Sens. Actuators A 132, 90 (2006).

    Article  Google Scholar 

  8. P. Ripka, J. Magn. Magn. Mater. 215, 735 (2000).

    Article  Google Scholar 

  9. M.H. Acuna, Rev. Sci. Instrum. 73, 3717 (2002).

    Article  Google Scholar 

  10. Y.M. Zhang, M. Steiger, A.D. Hibbs, R.E. Grimm, and T.A. Sprott, J. Environ. Eng. Geophys. 15, 51 (2010).

    Article  Google Scholar 

  11. M.R. Kirchhoff and S. Buttgenbach, Microsyst. Technol. 16, 787 (2010).

    Article  Google Scholar 

  12. F. Ludwig, E. Heim, and M. Schilling, J. Magn. Magn. Mater. 321, 1644 (2009).

    Article  Google Scholar 

  13. O. Zorlu, P. Kejik, and R.S. Popovic, Sens. Actuators A 135, 43 (2007).

    Article  Google Scholar 

  14. C.C. Lu, Y.T. Liu, F.Y. Jhao, and J.T. Jeng, Sens. Actuators A 179, 39 (2012).

    Article  Google Scholar 

  15. H. Joisten, B. Guilhamat, M. Audoin, J.M. Leger, R. Cuchet, G. Barrois, J.B. Albertini, P. Gaud, P. Renaux, D. Bloch, and B. Viala, IEEE Trans. Magn. 41, 4356 (2005).

    Article  Google Scholar 

  16. M. Janosek and P. Ripka, Sens. Actuators A 151, 141 (2009).

    Article  Google Scholar 

  17. P. Ripka and W.G. Hurley, Sens. Actuators A 129, 75 (2006).

    Article  Google Scholar 

  18. J. Lei, C. Lei, and Y. Zhou, Measurement 46, 710 (2013).

    Article  Google Scholar 

  19. C. Lei, J. Lei, Z. Yang, and Y. Zhou, Microsyst. Technol. 19, 167 (2013).

    Article  Google Scholar 

  20. A. Garcia and C. Moron, IEEE Trans. Magn. 38, 3312 (2002).

    Article  Google Scholar 

  21. C. Hinnrichs, J. Stahl, K. Kuchenbrandt, and M. Schilling, IEEE Trans. Magn. 37, 1983 (2001).

    Article  Google Scholar 

  22. D.X. Chen, E. Pardo, and A. Sanchez, IEEE Trans. Magn. 41, 2077 (2005).

    Article  Google Scholar 

  23. C. Lei, L. Chen, J. Lei, X.H. Yang, and Y. Zhou, Sens. Lett. 9, 1689 (2011).

    Article  Google Scholar 

  24. W.Y. Choi, J.S. Hwang, and S.O. Choi, IEEE Sens. J. 4, 768 (2004).

    Article  Google Scholar 

  25. C. Lei, Y. Liu, X.C. Sun, T. Wang, Z. Yang, and Y. Zhou, IEEE Sens. J. 15, 5010 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by The National Natural Science Foundation of China (No. 61273065), National Science and Technology Support Program (2012BAK08B05), Natural Science Foundation of Shanghai (13ZR1420800), the Support Fund of Shanghai Jiao Tong University (AgriX2015005),the Support Fund of the Joint Research Center for Advanced Aerospace Technology of Shanghai Academy of Spaceflight Technology-Shanghai Jiao Tong University (USCAST2015-2), the Support Fund of Aerospace Technology (15GFZ-JJ02-05), the Analytical and Testing Center in Shanghai Jiao Tong University, and the Center for Advanced Electronic Materials and Devices in Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, C., Sun, XC. & Zhou, Y. Reverse Optimization of an Integrated Solenoid Fluxgate Sensor Based on Co-based Amorphous Soft Magnetic Ribbon. J. Electron. Mater. 45, 5356–5361 (2016). https://doi.org/10.1007/s11664-016-4764-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4764-2

Keywords

Navigation