Skip to main content
Log in

Effect of Silver Flakes in Silver Paste on the Joining Process and Properties of Sandwich Power Modules (IGBTs Chip/Silver Paste/Bare Cu)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, a silver paste has been introduced for attaching chips onto bare Cu substrates (without coating) without applying pressure. Small nano-thickness Ag flakes, measuring 1 μm–5 μm length, were embedded uniformly in Ag nanoparticles for improving the density of the material. The presence of silver flakes in the silver paste affected the joining process and its microstructure. Microstructure characterization revealed that densification of the silver layer was affected by the presence of silver flakes as the flakes coarsened and formed reactive in situ nanoparticles, which facilitated the sintering between the flakes and the incorporated nanoparticles. Coarsening of silver flakes depended on the sintering temperature, time, and the atmosphere, which affected the decomposition and burning out of organics presented on the surface of the flakes. A high-density silver layer was obtained due to the presence of compact silver flakes. With an increase in the microstructure density, a higher bonding strength and a lower thermal impedance of the sintered joints were achieved. On performing pressureless sintering at 270°C for 30 min under 99.99% N2 or 4% H2/N2, the bonding strength and thermal impedance for 11 × 11 mm2 chips were excellent, measuring approximately 21.9 MPa and 0.077°C/W, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Siow, J. Alloys. Compd. 514, 15 (2012).

    Article  Google Scholar 

  2. Z. Pešina, V. Vykoukal, M. Palcut, and J. Sopoušek, Electron. Mater. Lett. 10, 1 (2014).

    Article  Google Scholar 

  3. R. Khazaka, L. Mendizabal, and D. Henry, J. Electron. Mater. 43, 7 (2014).

    Article  Google Scholar 

  4. J.G. Bai, J.N. Calata, and G.Q. Lu, IEEE Trans. Eelctron. Packag. Manu. 30, 4 (2007).

    Article  Google Scholar 

  5. W. Sabbah, R. Riva, S. Hascoët, C. Buttay, S. Azzopardi, E. Woirgard D. Planson, B. Allard and R. Meuret, in 7th International Conference on Integrated Power Electronics Systems (CIPS). IEEE pp. 1–7. (2012)

  6. F. Le Henaff, S. Azzopardi, J.Y. Deletage, E. Woirgard, S. Bontemps, and J. Joguet, Microelectron. Reliability. 52, 9 (2012).

    Article  Google Scholar 

  7. G. Chen, X.H. Sun, P. Nie, Y.H. Mei, G.Q. Lu, and X. Chen, J. Electron. Mater. 41, 4 (2012).

    Google Scholar 

  8. T.G. Lei, J.N. Calata, G.Q. Lu, X. Chen, and S. Luo, IEEE Trans. Compon. Packag. Technol. 33, 1 (2010).

    Article  Google Scholar 

  9. H.G. Zheng, D. Berry, J.N. Calata, K.D.T. Ngo, S. Luo, and G.Q. Lu, IEEE Trans. Compon. Packag. Technol. 3, 6 (2013).

    Google Scholar 

  10. T. Wang, X. Chen, G.Q. Lu, and G.Y. Lei, J. Electron. Mater. 36, 10 (2007).

    Google Scholar 

  11. Z.Y. Zhang, J.N. Calata, J.G. Bai, G.Q. Lu, in Materials Processing and Manufacturing Division Fifth Global Symposium, TMS, pp. 129–135, (2004)

  12. S. Wang, H.J. Ji, M.Y. Li, and C.Q. Wang, Mater. Lett. 85, 61 (2012).

    Article  Google Scholar 

  13. S.C. Fu, Y.H. Mei, G.Q. Lu, X. Li, G. Chen, and X. Chen, Mater. Lett. 128, 42 (2014).

    Article  Google Scholar 

  14. A. Sharif, M.N. Islam, and Y.C. Chan, Mater. Sci. Eng., B 113, 3 (2004).

    Article  Google Scholar 

  15. S.K. Kang, W.K. Choi, D.Y. Shih, P. Lauro, D.W. Henderson, T. Gosselin, D.N. Leonard, in Proceedings of the 52nd Electronic Components and Technology Conference, (2002) p. 146

  16. P.G. Kim, J.W. Jang, T.Y. Lee, and K.N. Tu, J. Appl. Physics. 86, 12 (1999).

    Google Scholar 

  17. D.W. Henderson, J.J. Woods, T.A. Gosselin, J. Bartelo, D.E. King, T.M. Korhonen, M.A. Korhonen, L.P. Lehman, E.J. Cotts, S.K. Kang, P. Lauro, D.Y. Shih, C. Goldsmith, and K.J. Puttlitz, J. Mater. Res. 19, 6 (2004).

  18. E. Ide, A. Angata, A. Hirose, and K.F. Kobayashi, Acta Mater. 53, 8 (2005).

    Article  Google Scholar 

  19. A. Hu, J.Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, and C.X. Xu, Appl. Phys. Let. 97, 15 (2010).

    Google Scholar 

  20. G. Chen, D. Han, Y.H. Mei, X. Cao, T. Wang, X. Chen, and G.Q. Lu, IEEE Trans. Device. Mater. Rel. 12, 1 (2012).

    Article  Google Scholar 

  21. N. Chawla and X. Deng, Mater. Sci. Eng., A 390, 1–2 (2005).

    Article  Google Scholar 

  22. T.G. Lei, J.N. Calata, and G.Q. Lu, IEEE Trans. Compon. Packag. Technol. 33, 1 (2010).

    Article  Google Scholar 

  23. R.W. Zhang, W. Lin, K.S. Moon, and C.P. Wong, J. Am. Chem. Soc. 2, 9 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, SY., Li, X., Mei, YH. et al. Effect of Silver Flakes in Silver Paste on the Joining Process and Properties of Sandwich Power Modules (IGBTs Chip/Silver Paste/Bare Cu). J. Electron. Mater. 45, 5789–5799 (2016). https://doi.org/10.1007/s11664-016-4739-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4739-3

Key words

Navigation