Skip to main content
Log in

Effect of Li-Nb Codoping on Structural, Dielectric, Optical, and Multiferroic Properties of BiFeO3

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

(Bi1−x Li x )(Fe1−x Nb x )O3 (x = 0, 0.1, 0.2, 0.3, 0.4) (BLFN) ceramics have been synthesized by a standard solid-state reaction method and the effect of Li-Nb codoping on their structural, dielectric, optical, and multiferroic properties investigated using various experimental techniques. X-ray diffraction study indicated the formation of pure rhombohedral phase for x = 0 and 0.1. However, a structural phase transition from rhombohedral to tetragonal phase was observed for the x = 0.3 and 0.4 compositions, with a mixed phase for x = 0.2. An enhancement of the dielectric constant (except for x = 0.4) was observed, with a reduction in the tangent loss. A decrease in the leakage current density by four orders of magnitude along with a reduction of the grain size were observed for the sample with x = 0.1. With increasing Li-Nb concentration in bismuth ferrite, significant improvements in remanent polarization, soft ferromagnetic/ferrimagnetic characteristics, and magnetoelectric coupling coefficient were observed. The Fourier-transform infrared (FTIR) peak at 555 cm−1 for x = 0 gradually shifted towards higher wavenumber with increasing Li-Nb concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Rivera, Ferroelectrics 161, 165 (1994).

    Article  Google Scholar 

  2. B.I. Alshin and D.N. Astrov, Sov. Phys. JETP 17, 809 (1963).

    Google Scholar 

  3. G.T. Rado, Phys. Rev. Lett. 13, 335 (1964).

    Article  Google Scholar 

  4. T. Watanabe and K. Kohn, Phase Trans. 15, 57 (1989).

    Article  Google Scholar 

  5. G.A. Smolenskii and I.E. Chupis, Sov. Phys. Usp. 25, 475 (1982).

    Article  Google Scholar 

  6. W. Eerenstein, N.D. Mathur, and J.F. Scott, Nature 442, 759 (2006).

    Article  Google Scholar 

  7. Y. Tokura, J. Magn. Magn. Mater. 310, 1145 (2007).

    Article  Google Scholar 

  8. S.W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).

    Article  Google Scholar 

  9. R. Ramesh and N.A. Spaldin, Nat. Mater. 6, 21 (2007).

    Article  Google Scholar 

  10. K.F. Wang, Adv. Phys. 58, 321 (2009).

    Article  Google Scholar 

  11. S.K. Pradhan, J. Das, P.P. Rout, S.K. Das, S. Samantray, D.K. Mishra, D.R. Sahu, A.K. Pradhan, K. Zhang, V.V. Srinivasu, and B.K. Roul, J. Alloys Compd. 509, 2645 (2011).

    Article  Google Scholar 

  12. R. Majumdar, P.S. Devi, D. Bhattacharya, P. Choudhury, and A. Sen, Appl. Phys. Lett. 91, 062510 (2007).

    Article  Google Scholar 

  13. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).

    Article  Google Scholar 

  14. S.Y. Yang, F. Zavaliche, L. Mohaddes-Ardabili, V. Vaithyanathan, D.G. Schlom, and Y.J. Lee, Appl. Phys. Lett. 87, 102903 (2005).

    Article  Google Scholar 

  15. S.T. Zhang, Y. Zhang, M.H. Lu, C.L. Du, Y.F. Chen, Z.G. Liu, Y.Y. Zhu, N.B. Ming, and X.Q. Pan, Appl. Phys. Lett. 88, 162901 (2006).

    Article  Google Scholar 

  16. F.Z. Huang, X.M. Lu, W.W. Lin, X.M. Wu, Y. Kan, and J.S. Zhu, Appl. Phys. Lett. 89, 242914 (2006).

    Article  Google Scholar 

  17. V.A. Khomchenko, D.A. Kiselev, I.K. Bdikin, V.V. Shvartsman, P. Borisov, W. Kleemann, J.M. Vieira, and A.L. Kholkin, Appl. Phys. Lett. 93, 262905 (2008).

    Article  Google Scholar 

  18. F. Yu, M.Y. Li, Z.Q. Hu, L. Pei, D.Y. Guo, X.Z. Zhao, and S.X. Dong, Appl. Phys. Lett. 93, 182909 (2008).

    Article  Google Scholar 

  19. P.C. Sati, M. Arora, S. Chauhan, M. Kumar, and S. Chhoker, Ceram. Int. 40, 7805 (2014).

    Article  Google Scholar 

  20. Y.K. Jun, W.T. Moon, C.M. Chang, H.S. Kim, H.S. Ryu, J.W. Kim, K.H. Kim, and S.H. Hing, Solid State Commun. 135, 133 (2005).

    Article  Google Scholar 

  21. C.F. Chung, J.P. Lin, and J.M. Wu, Appl. Phys. Lett. 88, 242909 (2006).

    Article  Google Scholar 

  22. X. Qi, J. Dho, R. Tomov, M.G. Blamire, and J.L. MacManus-Driscoll, Appl. Phys. Lett. 86, 062903 (2005).

    Article  Google Scholar 

  23. Y. Zhang, S. Yu, and J. Cheng, J. Eur. Ceram. Soc. 30, 271 (2010).

    Article  Google Scholar 

  24. Y.F. Cui, Y.G. Zhao, L.B. Luo, J.J. Yang, H. Chang, M.H. Zhu, D. Xie, and T.L. Ren, Appl. Phys. Lett. 97, 222904 (2010).

    Article  Google Scholar 

  25. W.-S. Kim, Y.-K. Jun, H. Hong, and Won-Sik Kim, J. Magn. Magn. Mater. 321, 3262 (2009).

    Article  Google Scholar 

  26. G.L. Song, H.X. Zhang, T.X. Wang, H.G. Yang, and F.G. Chang, J. Magn. Magn. Mater. 324, 2121 (2012).

    Article  Google Scholar 

  27. Dimple P. Dutta, B.P. Mandal, M.D. Mukadam, S.M. Yusuf, and A.K. Tyagi, Dalton Trans. 43, 7838 (2014).

    Article  Google Scholar 

  28. M.M. Shirolkar, C. Hao, X. Dong, T. Guo, L. Zhang, M. Li, and H. Wang, Nanoscale 6, 4735 (2014).

    Article  Google Scholar 

  29. S. Dash, R.N.P. Choudhary, P.R. Das, and A. Kumar, Appl. Phys. A 118, 1023 (2015).

    Article  Google Scholar 

  30. H. Dai, Z. Chen, R. Xue, T. Li, J. Chen, and H. Xiang, Ceram. Int. 39, 5373 (2013).

    Article  Google Scholar 

  31. J. Prado-Gonjal, M.E. Villafuerte-Castrejon, L. Fuentes, and E. Moran, Mater. Res. Bull. 44, 1734 (2009).

    Article  Google Scholar 

  32. S.K. Pradhan, J. Das, P.P. Rout, S.K. Das, D.K. Mishra, D.R. Sahu, A.K. Pradhan, V.V. Srinivasu, B.B. Nayak, S. Verma, and B.K. Roul, J. Magn. Magn. Mater. 322, 3614 (2010).

    Article  Google Scholar 

  33. M.A. Basith, O. Kurni, M.S. Alam, B.L. Sinha, and B. Ahmmad, J. Appl. Phys. 115, 024102 (2014).

    Article  Google Scholar 

  34. J.J. Ge, X.B. Xue, G.F. Cheng, M. Yang, B. You, W. Zhang, X.S. Wu, A. Hu, J. Du, and S.J. Zhang, J. Magn. Magn. Mater. 324, 200 (2012).

    Article  Google Scholar 

  35. G.D. Hu, X. Cheng, W.B. Wu, and C.H. Yang, Appl. Phys. Lett. 91, 232909 (2007).

    Article  Google Scholar 

  36. A.R. Makhdoom, M.J. Akhtar, M.A. Rafiq, and M.M. Hassan, Ceram. Int. 38, 3829 (2012).

    Article  Google Scholar 

  37. Z. Lin, W. Cai, W. Jiang, C. Fu, C. Li, and Y. Song, Ceram. Int. 39, 8729 (2013).

    Article  Google Scholar 

  38. T. Karthik, A. Srinivas, V. Kamaraj, and V. Chandrasekeran, Ceram. Int. 38, 1093 (2012).

    Article  Google Scholar 

  39. P.A. Jha, P.K. Jha, A.K. Jha, and R.K. Dwivedi, Mater. Res. Bull. 48, 101 (2013).

    Article  Google Scholar 

  40. P. Thakuria and P.A. Joy, Appl. Phys. Lett. 97, 162504 (2010).

    Article  Google Scholar 

  41. R. Rai, S.K. Mishra, N.K. Singh, S. Sharma, and A.L. Kholkin, Curr. Appl. Phys. 11, 508 (2011).

    Article  Google Scholar 

  42. D. Bochenek, P. Niemiec, A. Chrobak, G. Ziolkowski, and A. Błachowski, Mater. Charact. 87, 36 (2014).

    Article  Google Scholar 

  43. P. Fischer, M. Polemska, I. Sosnowska, and M. Szymanski, J. Phys. C 13, 1931 (1980).

    Article  Google Scholar 

  44. C. Tabares-Munoz, J.P. Rivera, A. Monnier, and H. Schmid, Jpn. J. Appl. Phys. 24, 1051 (1985).

    Article  Google Scholar 

  45. S. Karimi, I.M. Reaney, Y. Han, J. Pokorny, and I. Sterianou, J. Mater. Sci. 44, 5102 (2009).

    Article  Google Scholar 

  46. X. Xue, T. Guoqiangn, R. Huijun, and X. Ao, Ceram. Int. 39, 6223 (2013).

    Article  Google Scholar 

  47. A. Mukherjee, M. Banerjee, S. Basu, N.T.K. Thanh, L.A.W. Green, and M. Pal, Phys. B Condens. Matter 448, 199 (2014).

    Article  Google Scholar 

  48. M. Vopsaroiu, M.G. Cain, G. Sreenivasulu, G. Srinivasan, and A.M. Balbashov, Mater. Lett. 66, 282 (2012).

    Article  Google Scholar 

  49. T. Nagatomo, C. Ichikawa, and O. Omoto, J. Electrochem. Soc. 134, 305 (1987).

    Article  Google Scholar 

  50. A. Mukherjee, S.K.M. Hossain, M. Pal, and S. Basu, Appl. Nanosci. 2, 305 (2012).

    Article  Google Scholar 

  51. V. Singh, S. Sharma, P.K. Jha, M. Kumar, and R.K. Dwivedi, Ceram. Int. 40, 1971 (2014).

    Article  Google Scholar 

  52. P. Kumar and M. Kar, Mater. Chem. Phys. 148, 968 (2014).

    Article  Google Scholar 

  53. N. Kumar, A. Kaushal, C. Bhardwaj, and D. Kaur, Optoelectron. Adv. Mater. Rapid Commun. 4, 1497 (2010).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Ashok Kumar, NPL, New Delhi for his kind help with polarization measurements and NISER, Bhubaneswar for carrying out FTIR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swagatika Dash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, S., Choudhary, R.N.P. Effect of Li-Nb Codoping on Structural, Dielectric, Optical, and Multiferroic Properties of BiFeO3 . J. Electron. Mater. 45, 4129–4137 (2016). https://doi.org/10.1007/s11664-016-4651-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4651-x

Keywords

Navigation