Skip to main content

Advertisement

Log in

Design Optimization of PZT-Based Piezoelectric Cantilever Beam by Using Computational Experiments

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Piezoelectric energy harvesting is gaining huge research interest since it provides high power density and has real-life applicability. However, investigative research for the mechanical–electrical coupling phenomenon remains challenging. Many researchers depend on physical experiments to choose devices with the best performance which meet design objectives through case analysis; this involves high design costs. This study aims to develop a practical model using computer simulations and to propose an optimized design for a lead zirconate titanate (PZT)-based piezoelectric cantilever beam which is widely used in energy harvesting. In this study, the commercial finite element (FE) software is used to predict the voltage generated from vibrations of the PZT-based piezoelectric cantilever beam. Because the initial FE model differs from physical experiments, the model is calibrated by multi-objective optimization to increase the accuracy of the predictions. We collect data from physical experiments using the cantilever beam and use these experimental results in the calibration process. Since dynamic analysis in the FE analysis of the piezoelectric cantilever beam with a dense step size is considerably time-consuming, a surrogate model is employed for efficient optimization. Through the design optimization of the PZT-based piezoelectric cantilever beam, a high-performance piezoelectric device was developed. The sensitivity of the variables at the optimum design is analyzed to suggest a further improved device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Renaud, P. Fiorini, R.V. Schaijk, and C.V. Hoof, Smart Mater. Struct. 18, 49501 (2009).

    Article  Google Scholar 

  2. S. Wei, H. Hu, and S. He, Smart Mater. Struct. 22, 105020 (2013).

    Article  Google Scholar 

  3. B. Yang and K. Yun, Sens. Actuators, A 188, 427 (2012).

    Article  Google Scholar 

  4. S.R. Platt, S. Farritor, K. Garvin, and H. Haider, IEEE/ASME Trans. Mechatron. 10, 455 (2005).

    Article  Google Scholar 

  5. L. Moro and D. Benasciutti, Smart Mater. Struct. 19, 115011 (2010).

    Article  Google Scholar 

  6. S.J. Hwang, H.J. Jung, J.H. Kim, J.H. Ahn, D. Song, Y. Song, H.L. Lee, S.P. Moon, H. Park, and T.H. Sung, Curr. Appl. Phys. 15, 669 (2015).

    Article  Google Scholar 

  7. J. Granstrom, J. Feenstra, H.A. Sodano, and K. Farinholt, Smart Mater. Struct. 16, 1810 (2007).

    Article  Google Scholar 

  8. Y. Uzun and E. Kurt, Sens. Actuators 192, 58 (2013).

    Article  Google Scholar 

  9. Y. Uzun, S. Demirbas, and E. Kurt, Elektron. Elektrotech. 20, 35 (2014).

    Google Scholar 

  10. Y. Uzun, E. Kurt, and H.H. Kurt, Sens. Actuators 224, 119 (2015).

    Article  Google Scholar 

  11. J. Zhao and Z. You, Sci. World J. 2014, 893496 (2014).

    Google Scholar 

  12. H. Kim, S. Lee, C. Cho, J.E. Kim, B.D. Youn, and Y.Y. Kim, J. Intell. Mater. Syst. Struct. 26, 1128 (2015).

    Article  Google Scholar 

  13. M.S. Woo, K.H. Baek, J.H. Kim, S.B. Kim, D. Song, and T.H. Sung, J. Electroceram. 34, 180 (2015).

    Article  Google Scholar 

  14. K. Kim, D. Song, Y.H. Jeong, J.H. Paik, S. Nahm, H.J. Kim, and T.H. Sung, J. Electroceram. 34, 109 (2014).

    Article  Google Scholar 

  15. M.A. Ahmad and H.N. Alshareef, J. Electron. Mater. 40, 1477 (2011).

    Article  Google Scholar 

  16. M.A. Ahmad, J. Electron. Mater. 43, 452 (2014).

    Article  Google Scholar 

  17. J.E. Kim, H. Kim, H. Yoon, Y.Y. Kim, and B.D. Youn, Int. J. Precis Eng. Manuf. Green Technol. 2, 51 (2015).

    Article  Google Scholar 

  18. H. Rajabi and A. Darvizeh, Sci. Iran. B. 21, 587 (2014).

    Google Scholar 

  19. B. Behjat, M. Salehi, A. Armin, M. Sadighi, and M. Abbasi, Sci. Iran. B 18, 986 (2011).

    Article  Google Scholar 

  20. H.J. Jung, Y. Song, S.K. Hong, C.H. Yang, S.J. Hwang, S.Y. Jeong, and T.H. Sung, Sens. Actuators 222, 314 (2015).

    Article  Google Scholar 

  21. B.D. Youn, B.C. Jung, Z. Xi, S.B. Kim, and W.R. Lee, Comput. Methods Appl. Mech. Eng. 200, 1421 (2011).

    Article  Google Scholar 

  22. B.C. Jung, H. Yoon, H. Oh, G. Lee, M. Yoo, B.D. Youn, and Y.C. Huh, Struct. Multidiscp. Optim. 53, 161 (2015).

    Article  Google Scholar 

  23. R.H. Myers and D.C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 1st ed. (New York: John Wiley & Sons Inc, 1995), pp. 16–78.

    Google Scholar 

  24. J. Park and I.W. Sandberg, Neural Comput. 3, 246 (1991).

    Article  Google Scholar 

  25. J. Sacks, S.B. Schiller, and W.J. Welch, Technometrics 31, 41 (1989).

    Article  Google Scholar 

  26. J. Park, J. Stat. Plan. Inference 39, 95 (1994).

    Article  Google Scholar 

  27. M.E. Johnson, L.M. Moore, and D. Ylcisaker, J. Stat. Plan. Inference 26, 131 (1990).

    Article  Google Scholar 

  28. R. Cudeck and M. Browne, Multivar. Behav. Res. 18, 147 (1983).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the *Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20142020103970).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Hee Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Park, S., Lim, W. et al. Design Optimization of PZT-Based Piezoelectric Cantilever Beam by Using Computational Experiments. J. Electron. Mater. 45, 3848–3858 (2016). https://doi.org/10.1007/s11664-016-4497-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4497-2

Keywords

Navigation