Skip to main content
Log in

Mechanistic Prediction of the Effect of Microstructural Coarsening on Creep Response of SnAgCu Solder Joints

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Mechanistic microstructural models have been developed to capture the effect of isothermal aging on time dependent viscoplastic response of Sn3.0Ag0.5Cu (SAC305) solders. SnAgCu (SAC) solders undergo continuous microstructural coarsening during both storage and service because of their high homologous temperature. The microstructures of these low melting point alloys continuously evolve during service. This results in evolution of creep properties of the joint over time, thereby influencing the long term reliability of microelectronic packages. It is well documented that isothermal aging degrades the creep resistance of SAC solder. SAC305 alloy is aged for (24–1000) h at (25–100)°C (~0.6–0.8 × T melt). Cross-sectioning and image processing techniques were used to periodically quantify the effect of isothermal aging on phase coarsening and evolution. The parameters monitored during isothermal aging include size, area fraction, and inter-particle spacing of nanoscale Ag3Sn intermetallic compounds (IMCs) and the volume fraction of micronscale Cu6Sn5 IMCs, as well as the area fraction of pure tin dendrites. Effects of microstructural evolution on secondary creep constitutive response of SAC305 solder joints were then modeled using a mechanistic multiscale creep model. The mechanistic phenomena modeled include: (1) dispersion strengthening by coarsened nanoscale Ag3Sn IMCs in the eutectic phase; and (2) load sharing between pro-eutectic Sn dendrites and the surrounding coarsened eutectic Sn-Ag phase and microscale Cu6Sn5 IMCs. The coarse-grained polycrystalline Sn microstructure in SAC305 solder was not captured in the above model because isothermal aging does not cause any significant change in the initial grain size and orientation of SAC305 solder joints. The above mechanistic model can successfully capture the drop in creep resistance due to the influence of isothermal aging on SAC305 single crystals. Contribution of grain boundary sliding to the creep strain of coarse grained joints has not been modeled in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Kumar, B. Talenbanpour, U. Sahaym, C.H. Wen, and I. Dutta, in 2012 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (2012), pp. 880–887.

  2. S.L. Allen, M.R. Notis, R.R. Chromik, and R.P. Vinci, J. Mater. Res. 19, 1417 (2004).

    Article  Google Scholar 

  3. D.D.P.L. Snugovsky, Mater. Sci. Technol. 20, 1049 (2004).

    Article  Google Scholar 

  4. T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K. Zeng, and J.K. Kivilahti, J. Mater. Res. 17, 291 (2002).

    Article  Google Scholar 

  5. I. Dutta, D. Pan, R.A. Marks, and S.G. Jadhav, Mater. Sci. Eng. A 410–411, 48 (2005).

    Article  Google Scholar 

  6. T. Chen and I. Dutta, J. Electron. Mater. 37, 347 (2008).

    Article  Google Scholar 

  7. I. Dutta and P. Kumar, JOM 61, 29 (n.d.).

  8. H. Ma, J.C. Suhling, P. Lall, and M.J. Bozack, in Thermal and Thermomechanical Phenomena in Electronics Systems, 2006. ITHERM’06. The Tenth Intersociety Conference on (2006), pp. 961–976.

  9. H. Ma, J.C. Suhling, Y. Zhang, P. Lall, and M.J. Bozack, in Electronic Components and Technology Conference, 2007. ECTC’07. Proceedings. 57th (2007), pp. 653–668.

  10. D. Henderson and T. Gosselin, J. Mater. Res. 17, 2775 (2002).

    Article  Google Scholar 

  11. Q. Xiao, L. Nguyen, and W. D. Armstrong, in Electronic Components and Technology Conference, 2004. 54th Proceedings (2004), vol. 2, pp. 1325–1332

  12. V. Venkatadri, L. Yin, Y. Xing, E. Cotts, K. Srihari, and P. Borgesen, in Electronic Components and Technology Conference, 2009. 59th ECTC 2009 (2009), pp. 398–405.

  13. Y. Zhang, Z. Cai, J.C. Suhling, P. Lall, and M.J. Bozack, in Electronic Components and Technology Conference, 2008. ECTC 2008. 58th (2008), pp. 99–112.

  14. P. Chauhan, S. Mukherjee, M. Osterman, A. Dasgupta, and M. Pecht, in InterPACK (Burlingame, California, USA, 2013).

  15. J. Rösler and M. Bäker, Acta Mater. 48, 3553 (2000).

    Article  Google Scholar 

  16. N. Iosipescu, J. Mater. 2, 537 (1967).

    Google Scholar 

  17. T. Reinikainen, M. Poech, M. Krumm, and J. Kivilahti, J. Electron. Packag. 120, 106 (1998).

    Article  Google Scholar 

  18. G. Cuddalorepatta, M. Williams, and A. Dasgupta, J. Electron. Mater. 39, 2292 (2010).

    Article  Google Scholar 

  19. J. Gong, C. Liu, P.P. Conway, and V.V. Silberschmidt, Acta Mater. 56, 4291 (2008).

    Article  Google Scholar 

  20. S. Mukherjee, A. Dasgupta, B. Zhou, and T.R. Bieler, J. Electron. Mater. 43, 1119 (2014).

    Article  Google Scholar 

  21. J. Keller, D. Baither, U. Wilke, and G. Schmitz, Acta Mater. 59, 2731 (2011).

    Article  Google Scholar 

  22. G.S. Ansell, J. Weertman, N.R.L. (U.S.), and N.P.S. (U.S.), Creep of a Dispersion-Hardened Aluminum Alloy (Naval Research Laboratory, 1958).

  23. E. Arzt and J. Rösler, Acta Metall. 36, 1053 (1988).

    Article  Google Scholar 

  24. J. Rosler, Int. J. Mater. Prod. Technol. 18, 70 (2003).

    Article  Google Scholar 

  25. E. Arzt and D.S. Wilkinson, Acta Metall. 34, 1893 (1986).

    Article  Google Scholar 

  26. B.Q. Han and D.C. Dunand, Mater. Sci. Eng. A 300, 235 (2001).

    Article  Google Scholar 

  27. N.S. Brar and W.R. Tyson, Can. J. Phys. 50, 2257 (1972).

    Article  Google Scholar 

  28. R.W. Weeks, S.R. Pati, M.F. Ashby, and P. Barrand, Acta Metall. 17, 1403 (1969).

    Article  Google Scholar 

  29. T.-K. Lee, B. Zhou, L. Blair, K.-C. Liu, and T.R. Bieler, J. Electron. Mater. 39, 2588 (2010).

    Article  Google Scholar 

  30. B. Zhou, T.R. Bieler, T.-K. Lee, and K.-C. Liu, J. Electron. Mater. 38, 2702 (2009).

    Article  Google Scholar 

  31. T.R. Bieler and A.U. Telang, J. Electron. Mater. 38, 2694 (2009).

    Article  Google Scholar 

  32. S. Mukherjee, B. Zhou, A. Dasgupta, and T.R. Bieler, Int. J. Plast 78, 1 (2016).

    Article  Google Scholar 

  33. J. Preußner, Y. Rudnik, H. Brehm, R. Völkl, and U. Glatzel, Int. J. Plast 25, 973 (2009).

    Article  Google Scholar 

  34. S. Mukherjee, B. Zhou, A. Dasgupta, and T.R. Bieler, in 2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE) (2015), pp. 1–9.

  35. T. Mura, Micromechanics of Defects in Solids, 2nd ed. (Dordrecht: Springer, 1987).

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank more than 100 companies and organizations that support research activities at the Center for Advanced Life Cycle Engineering (CALCE) at the University of Maryland annually. The authors would also like to acknowledge and express their appreciation for the assistance with metallographic cross-sectional analysis provided by Mohit Goel, graduate student, and Marius Tabar, summer intern from the University of Mannheim, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Chauhan, P., Osterman, M. et al. Mechanistic Prediction of the Effect of Microstructural Coarsening on Creep Response of SnAgCu Solder Joints. J. Electron. Mater. 45, 3712–3725 (2016). https://doi.org/10.1007/s11664-016-4471-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4471-z

Keywords

Navigation