Skip to main content
Log in

Optical, Dielectric Characterization and Impedance Spectroscopy of Ni-Substituted MgTiO3 Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report the effects of oxygen mixing percentage (OMP) and annealing temperature on surface morphology, optical, dielectric and electrical properties of (Mg0.95Ni0.05)TiO3 (MNT) thin films deposited onto amorphous SiO2 and platinized silicon (Pt/TiO2/SiO2/Si) substrates by radio frequency (RF) magnetron sputtering. The annealed films exhibited the highest refractive index, 2.05, at 600 nm with an optical bandgap value of 4.33 eV. The metal–insulator–metal (MIM) capacitors of the MNT thin films were fabricated under different OMPs and the dielectric properties were analyzed by using Maxwell–Wagner two-layer theory and Koop’s phenomenological theory. MNT films prepared under 50% OMP displayed the highest dielectric constant (11.21) and minimum loss tangent (0.0114) at 1 MHz. The impedance spectroscopy of the films deposited under 50% OMP has been studied. The Nyquist plots of MNT films revealed two semi-circular arcs and is explained on the basis of an equivalent circuit model. The frequency-dependent alternative current (AC) conductivity followed the Jonscher’s power law. The activation energies are calculated using the Arrhenius relationship. The hopping frequency of the charged species was calculated, and the correlation between AC and direct current (DC) conduction mechanisms established in accordance with the Barton–Nakajima–Namikawa (BNN) relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sreemoolanadhan and M.T. Sebastian, Mater. Res. Bull. 30, 653 (1995).

    Article  Google Scholar 

  2. R.J. Cava, W.F. Peck Jr., J.J. Krajewski, G.L. Reberts, and B.P. Barber, Appl. Phys. Lett. 70, 1396 (1997).

    Article  Google Scholar 

  3. G.C. Ling, R.S. Withers, B.F. Cole, and N. Newman, IEEE T. Microw. Theory 42, 34 (1994).

    Article  Google Scholar 

  4. S. George and M.T. Sebastian, J. Am. Ceram. Soc. 93, 2164 (2010).

    Article  Google Scholar 

  5. V.M. Ferreira, J.L. Baptista, S. Kamaba, and J. Petzdt, J. Mater. Sci. 28, 5894 (1993).

    Article  Google Scholar 

  6. D. Pamu, K. Sudheendran, M.G. Krishna, K.C. James, and A.K. Bhatnagar, Thin Solid Films 517, 1587 (2009).

    Article  Google Scholar 

  7. M. Ferraris, E. Verne, P. Appendino, C. Moisescu, A. Krejewski, A. Ravaglioli, and A. Piancastelli, Biomaterials 21, 765 (2000).

    Article  Google Scholar 

  8. C.J. Brinker, G.W. Scherer, and J. Lee, J. Korean Phys. Soc. 32, 1417 (1998).

    Google Scholar 

  9. K.P. Surendran, A. Wu, P.M. Vilarinho, and V.M. Ferreira, J. Appl. Phys. 107, 114112 (2012).

    Article  Google Scholar 

  10. T.S. Kumar, P. Gogoi, S. Thota, and D. Pamu, AIP Adv. 4, 067142 (2014).

    Article  Google Scholar 

  11. P. Gogoi, T.S. Kumar, P. Sharma, and D. Pamu, J. Alloys Compd. 619, 527 (2015).

    Article  Google Scholar 

  12. J.H. Sohn, Y. Inaguma, S.O. Yoon, M. Iton, T. Nakamura, and H.J. Kim, Jpn. J. Appl. Phys. 33, 5466 (1994).

    Article  Google Scholar 

  13. R. Swanepoel, J. Phys. E 16, 1214 (1983).

    Article  Google Scholar 

  14. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).

    Article  Google Scholar 

  15. M. Dongol, Egypt. J. Sol. 25, 33 (2002).

    Google Scholar 

  16. R.D. Shannon, Acta Cryst. A32, 751 (1976).

    Article  Google Scholar 

  17. K. Barmak, J. Kim, C.S. Kim, W.E. Archibald, G.S. Rohrer, A.D. Rollett, D. Kinderleherer, S. Ta Asan, H. Zhang, and D.J. Srolovitz, Scr. Mater. 54, 1059 (2006).

    Article  Google Scholar 

  18. C.H. Wang, X.P. Jing, W. Feng, and J. Lu, J. Appl. Phys. 104, 034112 (2008).

    Article  Google Scholar 

  19. P.J. Martin, H.A. Macleod, R.P. Netterfield, C.G. Pacey, and W.G. Sainty, Appl. Opt. 22, 178 (1983).

    Article  Google Scholar 

  20. T.S. Kumar, R. Bhuyan, and D. Pamu, Appl. Surf. Sci. 264, 184 (2013).

    Article  Google Scholar 

  21. P. Gupta and M. Rarakhiani, Open Nanosci. J. 3, 15 (2009).

    Article  Google Scholar 

  22. V.M. Kugler, F. Soderlind, D. Music, U. Helmersson, J. Andreasson, and T. Lindback, J. Cryst. Growth 254, 400 (2003).

    Article  Google Scholar 

  23. A.F. Khan, M. Mehmood, M. Aslam, and M. Ashraf, Appl. Surf. Sci. 256, 2252 (2010).

    Article  Google Scholar 

  24. S. Upadhyay, O. Parkash, and D. Kumar, J. Phys. D 37, 1483 (2004).

    Article  Google Scholar 

  25. B.K. Barick, R.N.P. Choudhary, and D.K. Pradhan, Mater. Chem. Phys. 132, 1007 (2012).

    Article  Google Scholar 

  26. A.K. Jonscher, Nature 264, 673 (1977).

    Article  Google Scholar 

  27. K. Funke, Prog. Solid State Chem. 22, 111 (1993).

    Article  Google Scholar 

  28. A.K. Jonscher, Dielectric Relaxation in Solids (London: Chelsea Dielectric Press, 1983), p. 66.

    Google Scholar 

  29. B. Behera, P. Nayak, and R.N.P. Choudhary, J. Alloys Compd. 436, 226 (2007).

    Article  Google Scholar 

  30. M.H. Lakhdar, B. Ouni, and M. Amlouk, Mater. Sci. Semicond. Proc. 19, 32 (2014).

    Article  Google Scholar 

  31. C.R. Mariappan and G. Govindaraj, Solid State Ion. 176, 1311 (2005).

    Article  Google Scholar 

  32. D.R. James, Optical Thin Films (Washington, DC: SPIE, 1987), p. 28.

    Google Scholar 

  33. D. Leng, L. Wu, H. Jiang, Y. Zhao, J. Zhang, W. Li, and L. Feng, Int. J. Photoenergy 235971, 6 (2012).

    Google Scholar 

  34. Q. Ye, P.Y. Liu, Z.F. Tang, and L. Zhai, Vacuum 81, 627 (2007).

    Article  Google Scholar 

  35. H. Birey, J. Appl. Phys. 49, 2898 (1978).

    Article  Google Scholar 

  36. J. Rout, R. Padhee, P.R. Das, and R.N.P. Choudhary, Adv. Appl. Phys. 1, 105 (2013).

    Google Scholar 

  37. M. George, S.S. Nair, K.A. Malini, P.A. Joy, and M.R. Anantharaman, J. Phys. D 40, 1593 (2007).

    Article  Google Scholar 

  38. H. Mahamoud, B. Louati, F. Hlel, and K. Guidara, Bull. Mater. Sci. 34, 1069 (2011).

    Article  Google Scholar 

  39. S.K. Barik, P.K. Mahapatra, and R.N.P. Choudhary, Appl. Phys. A 85, 199 (2006).

    Article  Google Scholar 

  40. A. Shukla, R.N.P. Choudhary, and A.K. Thakur, J. Phys. Chem. Solids 70, 1401 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Pamu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogoi, P., Srinivas, P., Sharma, P. et al. Optical, Dielectric Characterization and Impedance Spectroscopy of Ni-Substituted MgTiO3 Thin Films. J. Electron. Mater. 45, 899–909 (2016). https://doi.org/10.1007/s11664-015-4209-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4209-3

Keywords

Navigation