Skip to main content
Log in

Control of Phase in Tin Sulfide Thin Films Produced via RF-Sputtering of SnS2 Target with Post-deposition Annealing

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Tin (II) Monosulfide (SnS) has become an interesting new material for thin film photovoltaics. SnS-based devices have achieved limited success in improved solar cell efficiency. While annealing is a typical post-deposition treatment used to improve thin film quality, sulfur volatility is an issue, despite strong Sn-S bonds in tin sulfide compounds. Annealing of sulfur-rich sputtered tin sulfide thin films in a vacuum environment has not been previously reported. In the present work, we investigated the optoelectronic properties, crystallographic phase, and morphology of annealed, sputtered tin sulfide thin films. Specifically, we studied the phase change and improvement in material quality as a result of post-deposition heat treatments. Tin sulfide thin films were sputtered with and without substrate heating. These samples were then annealed between 300°C and 500°C under moderate vacuum (<1 × 10−4 Pa) in the deposition chamber to find the optimal annealing process for producing α-SnS. Significantly improved crystallinity and morphology were seen in sulfur-rich thin films annealed at 400–500°C for 60 min. Annealed films had resistivity in the range of 30–300 Ω-cm. Experimental observations were confirmed by calculated phase diagrams, which show that annealing around 400°C at low pressure is optimal to obtain a phase-pure α-SnS film from an amorphous SnS2 film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.A. Burton and A. Walsh, Appl. Phys. Lett. 102, 13 (2013).

    Article  Google Scholar 

  2. T. Sorgenfrei, F. Hofherr, T. Jauss, and A. Croll, Cryst. Res. Technol. 48, 4 (2013).

    Article  Google Scholar 

  3. M. Devika, N.K. Reddy, K. Ramesh, R. Ganesan, K.R. Gunasekhar, E.S.R. Gopal, and K.T.R. Reddy, J. Electrochem. Soc. 154, H67 (2007).

    Article  Google Scholar 

  4. K.T.R. Reddy, N.K. Reddy, and R.W. Miles, Sol. Energy Mater. Sol. 90, 18 (2006).

    Google Scholar 

  5. J.L. Loferski, J. Appl. Phys. 27, 7 (1956).

    Article  Google Scholar 

  6. P. Sinsermsuksakul, L. Sun, S.W. Lee, H.H. Park, S.B. Kim, C. Yang, and R.G. Gordon, Adv. Eng. Mater. 4, 15 (2014).

    Google Scholar 

  7. H. Noguchi, A. Setiyadi, H. Tanamura, T. Nagatomo, and O. Omoto, Sol. Energy Mater. Sol. C 35, 1 (1994).

    Article  Google Scholar 

  8. S.S. Hedge, A.G. Kunjomana, K.A. Chandrasekharan, K. Ramesh, and M. Prashantha, Physica B 406, 5 (2011).

    Google Scholar 

  9. P. Sinsermsuksakul, J. Heo, W. Noh, A.S. Hock, and R.G. Gordon, Adv. Eng. Mater. 1, 6 (2011).

    Google Scholar 

  10. L.A. Burton, D. Colombara, R.D. Abellon, F.C. Grozema, L.M. Peter, T.J. Savenije, G. Dennler, and A. Walsh, Chem. Mater. 25, 24 (2013).

    Article  Google Scholar 

  11. N. Reddy and K.T.R. Reddy, Mater. Chem. Phys. 102, 1 (2007).

    Article  Google Scholar 

  12. M. Devika, N.K. Reddy, D.S. Reddy, Q. Ahsanulhaq, K. Ramesh, E.S.R. Gopal, K.R. Gunasekhar, and Y.B. Hahn, J. Electrochem. Soc. 155, H130 (2008).

    Article  Google Scholar 

  13. S. Cheng, G. Chen, Y. Chen, and C. Huang, Opt. Mater. 29, 4 (2006).

    Article  Google Scholar 

  14. R.E. Banai, H. Lee, M.A. Motyka, R. Chandrasekharan, N.J. Podraza, J.R.S. Brownson, and M.W. Horn, IEEE J. Photovolt. 3, 3 (2013).

    Article  Google Scholar 

  15. K. Hartman, J.L. Johnson, M.I. Bertoni, D. Recht, M. Aziz, M.A. Scarpulla, and T. Buonassisi, Thin Solid Films 519, 21 (2010).

    Google Scholar 

  16. J.R.S. Brownson, C. Georges, and C. Levy-Clement, Chem. Mater. 18, 26 (2006).

    Article  Google Scholar 

  17. R.E. Banai, H. Lee, S. Zlotnikov, J.R.S. Brownson, and M.W. Horn, IEEE Photovoltaic Specialists Conference, 2013

  18. R.E. Banai, H. Lee, M. Lewinsohn, M.A. Motyka, R. Chandrasakharan, N.J. Podraza, J.R.S. Brownson, and M.W. Horn, IEEE Photovoltaic Specialists Conference, 2012

  19. M.G. Sousa, A.F. da Cunha, and P.A. Fernandes, J. Alloys Compd. 592, 80 (2014).

    Article  Google Scholar 

  20. R.C. Sharma and Y.A. Chang, Bull. Alloy Phase Diagr. 7, 3 (1986).

    Google Scholar 

  21. L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams (New York: Academic Press, 1970).

    Google Scholar 

  22. N. Saunders and A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, ed. R.W. Cahn (Oxford: Pergamon, 1998)

  23. Z.K. Liu, J. Phase Equilib. Diff. 30, 5 (2009).

    Google Scholar 

  24. Z.K. Liu, D.G. Schlom, W. Li, and X.X. Xi, Appl. Phys. Lett. 78, 23 (2001).

    Article  Google Scholar 

  25. J.F. Ihlefeld, N.J. Podraza, Z.K. Liu, R.C. Rai, X. Xu, T. Heeg, Y.B. Chen, J. Li, R.W. Collins, J.L. Musfeldt, X.Q. Pan, J. Schubert, R. Ramesh, and D.G. Schlom, Appl. Phys. Lett. 92, 14 (2008).

    Article  Google Scholar 

  26. B. Van Zeghbroeck, The “hot-probe” experiment (2011), http://ecee.colorado.edu/~bart/book/book. Accessed 7 July 2015

  27. V. Piacente, S. Foglia, and P. Scardala, J. Alloys Compd. 177, 1 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the assistance of the Materials Characterization Lab staff and the facilities at Penn State University. Additional thanks are extended to Drs. T. Jackson and S. Mohney and their students for allowing us to use their facilities for Ti depositions and electronic measurements. This work was partly financially supported by NSF with Grant Nos. CHE-1230924.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.E. Banai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banai, R., Cordell, J., Lindwall, G. et al. Control of Phase in Tin Sulfide Thin Films Produced via RF-Sputtering of SnS2 Target with Post-deposition Annealing. J. Electron. Mater. 45, 499–508 (2016). https://doi.org/10.1007/s11664-015-4137-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4137-2

Keywords

Navigation