Skip to main content
Log in

The Effect of Annealing Above Glass Transition Temperature on the Optical Properties of Se85Te10Bi5 Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Se85Te10Bi5 films have been deposited using the thermal evaporation technique. Films with different thicknesses in the thickness range 590.2–273.9 nm were annealed at different annealing temperatures above the glass transition temperature for 120 min. The structure of the annealed films was checked by x-ray diffraction analysis, which indicated a polycrystalline nature for all annealed films, and that the degree of crystallinity increased with increasing annealing temperature. From the reflectance (R) and transmittance (T) measurements, the values of the optical absorption coefficient (α) for the annealed films were estimated to be in the wavelength range of 500–2500 nm. Analysis of the absorption coefficient data reveals allowed indirect transitions and the values of optical band gap (E g). The values of (E g) were found to be obeying the Tauc’s relation and decreasing with increasing annealing temperature. This behavior is discussed as due to thermal disordering with the structural changes upon annealing. Optical parameters such as lattice and the infinite frequency dielectric constant as (ε L and ε ), plasma frequency (ω p), carrier concentration to the effective mass ratio (N/m*), single- oscillator and dispersion energies (E o and E d) were found. The dependence of the optical parameters on the annealing temperature was studied and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Zakery and S.R. Elliott, J. Non-Cryst. Sol. 330, 1 (2003).

    Article  Google Scholar 

  2. P. Boolchand, Insulating and Semiconducting Glasses (Singapore: World Scientific, 2000).

    Google Scholar 

  3. M. Abkowitz, G.M.T. Foley, J. Morkovics, and A.C. Palumbo, AIP Conf. Proc. 120, 117 (1984).

    Article  Google Scholar 

  4. A.S. Maan, D.R. Goyal, S.K. Sharma, and T.P. Sharma, J. Non-Cryst. Solids 183, 186 (1995).

    Article  Google Scholar 

  5. N.F. Mott and E.A. Davis, Electronic Process in Non-Cryst Materials (Oxford: Clarendon, 1979).

    Google Scholar 

  6. M.M. Hafiz, A.H. Moharram, M.A. Abdel-Rahim, and A.A. Abu-Sehly, Thin Solid Films 292, 7 (1997).

    Article  Google Scholar 

  7. M.A. Abdel-Rahim, J. Phys. Chem. Solids 60, 29 (1999).

    Article  Google Scholar 

  8. M. Di Giulio, D. Manno, R. Rella, P. Siciliano, and A. Tepore, Sol. Energy Mater. 15, 209 (1987).

    Article  Google Scholar 

  9. A.A. Abu-Sehly, J. Mater. Sci. 35, 2009 (2000).

    Article  Google Scholar 

  10. S.O. Kasap, T. Wagner, V. Aiyah, O. Krylouk, A. Bekirov, and L. Tichy, J. Mater. Sci. 34, 3779 (1999).

    Article  Google Scholar 

  11. D.V. Harea, I.A. Vasilev, E.P. Colomeico, and M.S. Lovu, J. Optoelectron. Adv. Mater. 5, 1115 (2003).

    Google Scholar 

  12. M.A. Majeed Khan, M. Zulfequar, and M. Hussain, J. Phys. Chem. Solids 62, 1093 (2001).

    Article  Google Scholar 

  13. H. Zishan, M.M. Khan, M. Zulfequar, and M. Hussain, J. Phys.: Condens. Matter 7, 8979 (1995).

    Google Scholar 

  14. A. Sharma and P.B. Barman, Thin Solid Films 517, 3020 (2009).

    Article  Google Scholar 

  15. H.E. Atyia and A.E. Bekheet, Phys. B 403, 3130 (2008).

    Article  Google Scholar 

  16. N. Suria, K.S. Bindraa, P. Kumara, M.S. Kambojb, and R. Thangaraja, J. Ovonic Res. 2, 111 (2006).

    Google Scholar 

  17. S. Tolansky, Multiple–Beam Interference Microscopy of Metals (London: Academic Press, 1970), p. 55.

    Google Scholar 

  18. H.E. Atyia and A.S. Farid, J. Non-Cryst. Solids 480, 62 (2015).

    Google Scholar 

  19. A. Kadhim, A. Hmood, and H. AbuHassan, Mater. Letts. 65, 3105 (2011).

    Article  Google Scholar 

  20. A.M. Salem, Y.A. El-Gendy, and E.A. El-Sayad, Phys. B 404, 2425 (2009).

    Article  Google Scholar 

  21. M.I. Abd-Elrahman, A.Y. Abdel-Latief, R.M. Kaafagy, N. Younis, and M.M. Hafiz, Spectrochimica Acta A 13, 29 (2015).

    Article  Google Scholar 

  22. M. Murmann and Z. Phys, Z. Phys. 80, 161 (1933).

    Article  Google Scholar 

  23. M. Murmann and Z. Phys, Z. Phys. 101, 643 (1936).

    Article  Google Scholar 

  24. R. Swanepoel, J. Phys. E 16, 1214 (1983).

    Article  Google Scholar 

  25. M.M. El-Nahass and M.B. El Den, Opt. Laser Technol. 33, 31 (2001).

    Article  Google Scholar 

  26. F.S. Al-Hazi, Phys. B 404, 1354 (2009).

    Article  Google Scholar 

  27. F. Urbach, Phys. Rev. 92, 1324 (1952).

    Article  Google Scholar 

  28. A.S. Soltan, Appl. Phys. A 80, 117 (2005).

    Article  Google Scholar 

  29. K.L. Chopra, Optical Behaviour of Materials, ed. K.L. Chopra (India: Thomson Press, 1972), p. 330.

  30. R.A. Smith, Phil Mag Suppl 2, 81 (1953).

    Google Scholar 

  31. N.M. Zulfequar, J. Allows Compd. 576, 103 (2013).

    Article  Google Scholar 

  32. M.M. Hafiz, A.A. Othman, M.M. El-Nahass, and A.T. Al-Motasem, Phys. B 390, 348 (2007).

    Article  Google Scholar 

  33. M.M.A. Imran, O.A. Lafi, and M. Abu-Samak, Vacuum 86, 1589 (2012).

    Article  Google Scholar 

  34. S.H. Wemple and M.D. DiDomenico, J. Phys. Rev. B 3, 1338 (1970).

    Article  Google Scholar 

  35. M.M. El-Nahass, I.T. Zedan, and F.S. AbdSamaha, Opt. Lacer Technol. 44, 621 (2012).

    Article  Google Scholar 

  36. M.M. El-Nahass, A.A.M. Farag, and A.A. Atta, Synth. Met. 159, 589 (2009).

    Article  Google Scholar 

  37. M.M. El-Nahass, A.M. Farag, K.F.A. El-Rahman, and A.A.A. Darwish, Opt. Laser Technol. 37, 513 (2005).

    Article  Google Scholar 

  38. M. Barsoum, Fumdamentals of Ceramics (New York: McGraw-Hill, 1977), p. 543.

    Google Scholar 

  39. M.M. El-Nahass, Z. El-Gohary, and H.S. Soliman, Opt. Laser Technol. 35, 523 (2003).

    Article  Google Scholar 

  40. A.M. Salem, Y.A. EL-Gendy, G.B. Sakr, and W.Z. Soliman, J. Phys. D Appl. Phys. 41, 1 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. E. Atyia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atyia, H.E., Farid, A.S. The Effect of Annealing Above Glass Transition Temperature on the Optical Properties of Se85Te10Bi5 Thin Films. J. Electron. Mater. 45, 357–364 (2016). https://doi.org/10.1007/s11664-015-4087-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4087-8

Keywords

Navigation