Skip to main content
Log in

Synthesis via a Microwave-Assisted Wet Chemical Method and Characterization of Bi2Te3 with Various Morphologies

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Bi2Te3 with various morphologies, such as microrods, nanoplates, and nanoflowers, has been successfully fabricated by a microwave-assisted method in ethylene glycol solution without any surfactant. The structures and morphologies of the obtained products have been characterized by powder x-ray diffraction and field-emission scanning electron microscopy. Based on time-dependent experiments, a possible formation mechanism of the Bi2Te3 has been proposed. The concentration of KOH in the solution controls the rate of the disproportionation reaction of Te and plays an important role in the formation of the various morphologies of Bi2Te3. The electrical properties of bulk Bi2Te3 materials obtained by cold pressing and then vacuum heat treatment of the Bi2Te3 nanostructures with various morphologies have also been investigated. The highest power factor among the studied samples, ∼17.3 μW cm−1 K−2, was achieved using Bi2Te3 nanoflowers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kraemer, H.P. Feng, J.C. Caylor, B. Yu, Z. Ren, and G. Chen, Nat. Mater. 10, 532 (2011).

    Article  Google Scholar 

  2. Y. He, P. Lu, X. Shi, F. Xu, T. Zhang, G.J. Snyder, C. Uher, and L.D. Chen, Adv. Mater. (2015). doi:10.1002/adma.201501030.

    Google Scholar 

  3. J.P.A. Makongo, D.K. Misra, and X.Y. Zhou, J. Am. Chem. Soc. 133, 18843 (2011).

    Article  Google Scholar 

  4. W.J. Xie, J. He, H.J. Kang, X. Tang, S. Zhu, M. Laver, S. Wang, J.R.D. Copley, C.M. Brown, Q. Zhang, and T.M. Tritt, Nano Lett. 10, 3283 (2010).

    Article  Google Scholar 

  5. J.J. Shen, T.J. Zhu, and X.B. Zhao, Energy Environ. Sci. 3, 1519 (2010).

    Article  Google Scholar 

  6. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).

    Article  Google Scholar 

  7. M. Zhou, J.F. Li, and T. Kita, J. Am. Chem. Soc. 130, 4527 (2008).

    Article  Google Scholar 

  8. K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatizdis, Nature 489, 414 (2012).

    Article  Google Scholar 

  9. S.II. Kim, K.H. Lee, H.A. Mun, H.S. Kin, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shim, X.S. Li, Y.H. Lee, G.J. Snyder, and S.W. Kim, Science 348, 6230 (2015).

  10. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  Google Scholar 

  11. X.L. Li, K.F. Cai, D.H. Yu, and Y.Y. Wang, Superlattice Microst. 50, 557 (2011).

    Article  Google Scholar 

  12. Z.G. Zou, K.F. Cai, S. Chen, and Z. Qin, Mater. Res. Bull. 47, 3292 (2012).

    Article  Google Scholar 

  13. X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, and X.B. Zhang, Appl. Phys. Lett. 86, 062111 (2005).

    Article  Google Scholar 

  14. Y. Deng, C.W. Nan, G.D. Wei, L. Guo, and Y.H. Lin, Chem. Phys. Lett. 374, 410 (2003).

    Article  Google Scholar 

  15. Y. Du, K.F. Cai, H. Li, and B.J. An, J. Electron. Mater. 40, 518 (2011).

    Article  Google Scholar 

  16. W. Xie, S. Wang, S. Zhu, J. He, X.F. Tang, Q.J. Zhang, and T.M. Tritt, J. Mater. Sci. 48, 2745 (2013).

    Article  Google Scholar 

  17. X. Wang, K.F. Cai, and H. Liu, Cryst. Growth Des. 11, 4759 (2011).

    Article  Google Scholar 

  18. X. Wang, K.F. Cai, F. Shang, and S. Chen, J. Nanopart. Res. 15, 1541 (2013).

    Article  Google Scholar 

  19. Y. Jiang and Y.J. Zhu, J. Cryst. Growth 306, 351 (2007).

    Article  Google Scholar 

  20. H.M. Xu, G. Chen, R.C. Jin, D.H. Chen, J. Pei, and Y. Wang, CrystEngComm 15, 5626 (2013).

    Article  Google Scholar 

  21. X.A. Fan, J.Y. Yang, Z. Xie, K. Li, W. Zhu, X.K. Duan, C.J. Xiao, and Q.Q. Zhang, J. Phys. D Appl. Phys. 40, 5975 (2007).

    Article  Google Scholar 

  22. B. Zhou, Y. Zhao, L. Pu, and J.J. Zhu, Mater. Chem. Phys. 96, 192 (2006).

    Article  Google Scholar 

  23. Q. Yao, Y.J. Zhu, L.D. Chen, Z.L. Sun, and X.H. Chen, J. Alloys Compd. 481, 91 (2009).

    Article  Google Scholar 

  24. G.B. Ji, Y. Shi, L.J. Pan, and Y.D. Zheng, J. Alloys Compd. 509, 6015 (2011).

    Article  Google Scholar 

  25. A. Kadhim, A. Hmood, and H.A. Hassan, Solid State Sci. 21, 110 (2013).

    Article  Google Scholar 

  26. R. Harpeness and A. Gedanken, New J. Chem. 27, 1191 (2003).

    Article  Google Scholar 

  27. Y. Deng, N. Li, Y. Wang, and M. Yang, J. Inorg. Mater. 25, 664 (2010).

    Article  Google Scholar 

  28. G.H. Dong, Y.J. Zhu, and L.D. Chen, CrystEngComm 13, 6811 (2011).

    Article  Google Scholar 

  29. R.J. Metha, Y.L. Zhang, C. Karthik, B. Singh, R.W. Siegel, T. Borca-Tasciuc, and G. Ramanath, Nat. Mater. 11, 233 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kefeng Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Cai, K. & Shen, S. Synthesis via a Microwave-Assisted Wet Chemical Method and Characterization of Bi2Te3 with Various Morphologies. J. Electron. Mater. 45, 1425–1432 (2016). https://doi.org/10.1007/s11664-015-4058-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4058-0

Keywords

Navigation